Abstract
A novel multitrait fine-mapping method is presented. The method is implemented by a model that treats QTL effects as random variables. The covariance matrix of allelic effects is proportional to the IBD matrix, where each element is the probability that a pair of alleles is identical by descent, given marker information and QTL position. These probabilities are calculated on the basis of similarities of marker haplotypes of individuals of the first generation of genotyped individuals, using "gene dropping" (linkage disequilibrium) and transmission of markers from genotyped parents to genotyped offspring (linkage). A small simulation study based on a granddaughter design was carried out to illustrate that the method provides accurate estimates of QTL position. Results from the simulation also indicate that it is possible to distinguish between a model postulating one pleiotropic QTL affecting two traits vs. one postulating two closely linked loci, each affecting one of the traits.
Full Text
The Full Text of this article is available as a PDF (107.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almasy L., Dyer T. D., Blangero J. Bivariate quantitative trait linkage analysis: pleiotropy versus co-incident linkages. Genet Epidemiol. 1997;14(6):953–958. doi: 10.1002/(SICI)1098-2272(1997)14:6<953::AID-GEPI65>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
- Caliński T., Kaczmarek Z., Krajewski P., Frova C., Sari-Gorla M. A multivariate approach to the problem of QTL localization. Heredity (Edinb) 2000 Mar;84(Pt 3):303–310. doi: 10.1046/j.1365-2540.2000.00675.x. [DOI] [PubMed] [Google Scholar]
- George A. W., Visscher P. M., Haley C. S. Mapping quantitative trait loci in complex pedigrees: a two-step variance component approach. Genetics. 2000 Dec;156(4):2081–2092. doi: 10.1093/genetics/156.4.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang C., Zeng Z. B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics. 1995 Jul;140(3):1111–1127. doi: 10.1093/genetics/140.3.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knott S. A., Haley C. S. Multitrait least squares for quantitative trait loci detection. Genetics. 2000 Oct;156(2):899–911. doi: 10.1093/genetics/156.2.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meuwissen T. H., Goddard M. E. Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics. 2000 May;155(1):421–430. doi: 10.1093/genetics/155.1.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meuwissen Theo H. E., Karlsen Astrid, Lien Sigbjørn, Olsaker Ingrid, Goddard Mike E. Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics. 2002 May;161(1):373–379. doi: 10.1093/genetics/161.1.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sillanpä M. J., Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics. 1998 Mar;148(3):1373–1388. doi: 10.1093/genetics/148.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VanRaden P. M., Wiggans G. R. Derivation, calculation, and use of national animal model information. J Dairy Sci. 1991 Aug;74(8):2737–2746. doi: 10.3168/jds.S0022-0302(91)78453-1. [DOI] [PubMed] [Google Scholar]
- Weller J. I., Kashi Y., Soller M. Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. J Dairy Sci. 1990 Sep;73(9):2525–2537. doi: 10.3168/jds.S0022-0302(90)78938-2. [DOI] [PubMed] [Google Scholar]
- Yi N., Xu S. Bayesian mapping of quantitative trait loci under the identity-by-descent-based variance component model. Genetics. 2000 Sep;156(1):411–422. doi: 10.1093/genetics/156.1.411. [DOI] [PMC free article] [PubMed] [Google Scholar]