Skip to main content
Genetics logoLink to Genetics
. 2003 Mar;163(3):939–953. doi: 10.1093/genetics/163.3.939

Evidence for inversion polymorphism related to sympatric host race formation in the apple maggot fly, Rhagoletis pomonella.

Jeffrey L Feder 1, Joseph B Roethele 1, Kenneth Filchak 1, Julie Niedbalski 1, Jeanne Romero-Severson 1
PMCID: PMC1462491  PMID: 12663534

Abstract

Evidence suggests that the apple maggot, Rhagoletis pomonella (Diptera: Tephritidae) is undergoing sympatric speciation (i.e., divergence without geographic isolation) in the process of shifting and adapting to a new host plant. Prior to the introduction of cultivated apples (Malus pumila) in North America, R. pomonella infested the fruit of native hawthorns (Crataegus spp.). However, sometime in the mid-1800s the fly formed a sympatric race on apple. The recently derived apple-infesting race shows consistent allele frequency differences from the hawthorn host race for six allozyme loci mapping to three different chromosomes. Alleles at all six of these allozymes correlate with the timing of adult eclosion, an event dependent on the duration of the overwintering pupal diapause. This timing difference differentially adapts the univoltine fly races to an approximately 3- to 4-week difference in the peak fruiting times of apple and hawthorn trees, partially reproductively isolating the host races. Here, we report finding substantial gametic disequilibrium among allozyme and complementary DNA (cDNA) markers encompassing the three chromosomal regions differentiating apple and hawthorn flies. The regions of disequilibrium extend well beyond the previously characterized six allozyme loci, covering substantial portions of chromosomes 1, 2, and 3 (haploid n = 6 in R. pomonella). Moreover, significant recombination heterogeneity and variation in gene order were observed among single-pair crosses for each of the three genomic regions, implying the existence of inversion polymorphism. We therefore have evidence that genes affecting diapause traits involved in host race formation reside within large complexes of rearranged genes. We explore whether these genomic regions (inversions) constitute coadapted gene complexes and discuss the implications of our findings for sympatric speciation in Rhagoletis.

Full Text

The Full Text of this article is available as a PDF (183.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andolfatto P., Kreitman M. Molecular variation at the In(2L)t proximal breakpoint site in natural populations of Drosophila melanogaster and D. simulans. Genetics. 2000 Apr;154(4):1681–1691. doi: 10.1093/genetics/154.4.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andolfatto P., Przeworski M. Regions of lower crossing over harbor more rare variants in African populations of Drosophila melanogaster. Genetics. 2001 Jun;158(2):657–665. doi: 10.1093/genetics/158.2.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andolfatto P., Wall J. D., Kreitman M. Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. Genetics. 1999 Nov;153(3):1297–1311. doi: 10.1093/genetics/153.3.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aquadro C. F., Weaver A. L., Schaeffer S. W., Anderson W. W. Molecular evolution of inversions in Drosophila pseudoobscura: the amylase gene region. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):305–309. doi: 10.1073/pnas.88.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BENNETT J. H. On the theory of random mating. Ann Eugen. 1954 Mar;18(4):311–317. doi: 10.1111/j.1469-1809.1952.tb02522.x. [DOI] [PubMed] [Google Scholar]
  6. Babcock C. S., Anderson W. W. Molecular evolution of the Sex-Ratio inversion complex in Drosophila pseudoobscura: analysis of the Esterase-5 gene region. Mol Biol Evol. 1996 Feb;13(2):297–308. doi: 10.1093/oxfordjournals.molbev.a025589. [DOI] [PubMed] [Google Scholar]
  7. Berlocher S. H. Radiation and divergence in the Rhagoletis pomonella species group: inferences from allozymes. Evolution. 2000 Apr;54(2):543–557. doi: 10.1111/j.0014-3820.2000.tb00057.x. [DOI] [PubMed] [Google Scholar]
  8. Berlocher S. H., Smith D. C. Segregation and mapping of allozymes of the apple maggot fly. J Hered. 1983 Sep-Oct;74(5):337–340. doi: 10.1093/oxfordjournals.jhered.a109805. [DOI] [PubMed] [Google Scholar]
  9. Bénassi V., Aulard S., Mazeau S., Veuille M. Molecular variation of Adh and P6 genes in an African population of Drosophila melanogaster and its relation to chromosomal inversions. Genetics. 1993 Jul;134(3):789–799. doi: 10.1093/genetics/134.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Depaulis F., Brazier L., Veuille M. Selective sweep at the Drosophila melanogaster Suppressor of Hairless locus and its association with the In(2L)t inversion polymorphism. Genetics. 1999 Jul;152(3):1017–1024. doi: 10.1093/genetics/152.3.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dobzhansky T, Queal M L. Genetics of Natural Populations. II. Genic Variation in Populations of Drosophila Pseudoobscura Inhabiting Isolated Mountain Ranges. Genetics. 1938 Sep;23(5):463–484. doi: 10.1093/genetics/23.5.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Elena S. F., Lenski R. E. Test of synergistic interactions among deleterious mutations in bacteria. Nature. 1997 Nov 27;390(6658):395–398. doi: 10.1038/37108. [DOI] [PubMed] [Google Scholar]
  13. Feder J. L., Opp S. B., Wlazlo B., Reynolds K., Go W., Spisak S. Host fidelity is an effective premating barrier between sympatric races of the apple maggot fly. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):7990–7994. doi: 10.1073/pnas.91.17.7990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Feder J. L., Roethele J. B., Wlazlo B., Berlocher S. H. Selective maintenance of allozyme differences among sympatric host races of the apple maggot fly. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11417–11421. doi: 10.1073/pnas.94.21.11417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Feldman M. W., Christiansen F. B. The effect of population subdivision on two loci without selection. Genet Res. 1974 Oct;24(2):151–162. doi: 10.1017/s0016672300015184. [DOI] [PubMed] [Google Scholar]
  16. Felsenstein J. The effect of linkage on directional selection. Genetics. 1965 Aug;52(2):349–363. doi: 10.1093/genetics/52.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Filchak K. E., Roethele J. B., Feder J. L. Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature. 2000 Oct 12;407(6805):739–742. doi: 10.1038/35037578. [DOI] [PubMed] [Google Scholar]
  18. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hawthorne D. J., Via S. Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature. 2001 Aug 30;412(6850):904–907. doi: 10.1038/35091062. [DOI] [PubMed] [Google Scholar]
  20. Hey J. The mind of the species problem. Trends Ecol Evol. 2001 Jul 1;16(7):326–329. doi: 10.1016/s0169-5347(01)02145-0. [DOI] [PubMed] [Google Scholar]
  21. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kim S. C., Rieseberg L. H. The contribution of epistasis to species differences in annual sunflowers. Mol Ecol. 2001 Mar;10(3):683–690. doi: 10.1046/j.1365-294x.2001.01203.x. [DOI] [PubMed] [Google Scholar]
  23. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  24. Lee Y. H., Ota T., Vacquier V. D. Positive selection is a general phenomenon in the evolution of abalone sperm lysin. Mol Biol Evol. 1995 Mar;12(2):231–238. doi: 10.1093/oxfordjournals.molbev.a040200. [DOI] [PubMed] [Google Scholar]
  25. Lewontin R. C. Dobzhansky's genetics and the origin of species: is it still relevant? Genetics. 1997 Oct;147(2):351–355. doi: 10.1093/genetics/147.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Li W. H., Nei M. Stable linkage disequilibrium without epistasis in subdivided populations. Theor Popul Biol. 1974 Oct;6(2):173–183. doi: 10.1016/0040-5809(74)90022-7. [DOI] [PubMed] [Google Scholar]
  27. Long A. D., Mullaney S. L., Reid L. A., Fry J. D., Langley C. H., Mackay T. F. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1273–1291. doi: 10.1093/genetics/139.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  29. Metz E. C., Palumbi S. R. Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol Biol Evol. 1996 Feb;13(2):397–406. doi: 10.1093/oxfordjournals.molbev.a025598. [DOI] [PubMed] [Google Scholar]
  30. Mitton J. B., Koehn R. K. Population genetics of marine pelecypods. 3. Epistasis between functionally related isoenzymes of Mytilus edulis. Genetics. 1973 Mar;73(3):487–496. doi: 10.1093/genetics/73.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Navarro A., Barbadilla A., Ruiz A. Effect of inversion polymorphism on the neutral nucleotide variability of linked chromosomal regions in Drosophila. Genetics. 2000 Jun;155(2):685–698. doi: 10.1093/genetics/155.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nei M., Li W. H. Linkage disequilibrium in subdivided populations. Genetics. 1973 Sep;75(1):213–219. doi: 10.1093/genetics/75.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Noor M. A., Grams K. L., Bertucci L. A., Almendarez Y., Reiland J., Smith K. R. The genetics of reproductive isolation and the potential for gene exchange between Drosophila pseudoobscura and D. persimilis via backcross hybrid males. Evolution. 2001 Mar;55(3):512–521. doi: 10.1554/0014-3820(2001)055[0512:tgoria]2.0.co;2. [DOI] [PubMed] [Google Scholar]
  34. Noor M. A., Grams K. L., Bertucci L. A., Reiland J. Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci U S A. 2001 Oct 2;98(21):12084–12088. doi: 10.1073/pnas.221274498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rieseberg L. H. Chromosomal rearrangements and speciation. Trends Ecol Evol. 2001 Jul 1;16(7):351–358. doi: 10.1016/s0169-5347(01)02187-5. [DOI] [PubMed] [Google Scholar]
  36. Rozas J., Aguadé M. Gene conversion is involved in the transfer of genetic information between naturally occurring inversions of Drosophila. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11517–11521. doi: 10.1073/pnas.91.24.11517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rozas J., Aguadé M. Transfer of genetic information in the rp49 region of Drosophila subobscura between different chromosomal gene arrangements. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8083–8087. doi: 10.1073/pnas.90.17.8083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rozas J., Segarra C., Ribó G., Aguadé M. Molecular population genetics of the rp49 gene region in different chromosomal inversions of Drosophila subobscura. Genetics. 1999 Jan;151(1):189–202. doi: 10.1093/genetics/151.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Slatkin M. Gene flow and selection in a two-locus system. Genetics. 1975 Dec;81(4):787–802. doi: 10.1093/genetics/81.4.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ting C. T., Tsaur S. C., Wu M. L., Wu C. I. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science. 1998 Nov 20;282(5393):1501–1504. doi: 10.1126/science.282.5393.1501. [DOI] [PubMed] [Google Scholar]
  42. Wesley C. S., Eanes W. F. Isolation and analysis of the breakpoint sequences of chromosome inversion In(3L)Payne in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3132–3136. doi: 10.1073/pnas.91.8.3132. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES