Skip to main content
Genetics logoLink to Genetics
. 2003 Apr;163(4):1327–1336. doi: 10.1093/genetics/163.4.1327

Evidence for diversifying selection on erythrocyte-binding antigens of Plasmodium falciparum and P. vivax.

Jake Baum 1, Alan W Thomas 1, David J Conway 1
PMCID: PMC1462517  PMID: 12702678

Abstract

Malaria parasite antigens involved in erythrocyte invasion are primary vaccine candidates. The erythrocyte-binding antigen 175K (EBA-175) of Plasmodium falciparum binds to glycophorin A on the human erythrocyte surface via an N-terminal cysteine-rich region (termed region II) and is a target of antibody responses. A survey of polymorphism in a malaria-endemic population shows that nucleotide alleles in eba-175 region II occur at more intermediate frequencies than expected under neutrality, but polymorphisms in the homologous domains of two closely related genes, eba-140 (encoding a second erythrocyte-binding protein) and psieba-165 (a putative pseudogene), show an opposite trend. McDonald-Kreitman tests employing interspecific comparison with the orthologous genes in P. reichenowi (a closely related parasite of chimpanzees) reveal a significant excess of nonsynonymous polymorphism in P. falciparum eba-175 but not in eba-140. An analysis of the Duffy-binding protein gene, encoding a major erythrocyte-binding antigen in the other common human malaria parasite P. vivax, also reveals a significant excess of nonsynonymous polymorphisms when compared with divergence from its ortholog in P. knowlesi (a closely related parasite of macaques). The results suggest that EBA-175 in P. falciparum and DBP in P. vivax are both under diversifying selection from acquired human immune responses.

Full Text

The Full Text of this article is available as a PDF (155.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. H., Hudson D. E., Torii M., Ward G. E., Wellems T. E., Aikawa M., Miller L. H. The Duffy receptor family of Plasmodium knowlesi is located within the micronemes of invasive malaria merozoites. Cell. 1990 Oct 5;63(1):141–153. doi: 10.1016/0092-8674(90)90295-p. [DOI] [PubMed] [Google Scholar]
  2. Adams J. H., Sim B. K., Dolan S. A., Fang X., Kaslow D. C., Miller L. H. A family of erythrocyte binding proteins of malaria parasites. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7085–7089. doi: 10.1073/pnas.89.15.7085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen T. M., O'Connor D. H., Jing P., Dzuris J. L., Mothé B. R., Vogel T. U., Dunphy E., Liebl M. E., Emerson C., Wilson N. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature. 2000 Sep 21;407(6802):386–390. doi: 10.1038/35030124. [DOI] [PubMed] [Google Scholar]
  4. Anderson T. J., Haubold B., Williams J. T., Estrada-Franco J. G., Richardson L., Mollinedo R., Bockarie M., Mokili J., Mharakurwa S., French N. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol. 2000 Oct;17(10):1467–1482. doi: 10.1093/oxfordjournals.molbev.a026247. [DOI] [PubMed] [Google Scholar]
  5. Andolfatto P., Przeworski M. Regions of lower crossing over harbor more rare variants in African populations of Drosophila melanogaster. Genetics. 2001 Jun;158(2):657–665. doi: 10.1093/genetics/158.2.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Camus D., Hadley T. J. A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science. 1985 Nov 1;230(4725):553–556. doi: 10.1126/science.3901257. [DOI] [PubMed] [Google Scholar]
  7. Conway D. J., Cavanagh D. R., Tanabe K., Roper C., Mikes Z. S., Sakihama N., Bojang K. A., Oduola A. M., Kremsner P. G., Arnot D. E. A principal target of human immunity to malaria identified by molecular population genetic and immunological analyses. Nat Med. 2000 Jun;6(6):689–692. doi: 10.1038/76272. [DOI] [PubMed] [Google Scholar]
  8. Conway D. J., Roper C., Oduola A. M., Arnot D. E., Kremsner P. G., Grobusch M. P., Curtis C. F., Greenwood B. M. High recombination rate in natural populations of Plasmodium falciparum. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4506–4511. doi: 10.1073/pnas.96.8.4506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Daugherty J. R., Murphy C. I., Doros-Richert L. A., Barbosa A., Kashala L. O., Ballou W. R., Snellings N. J., Ockenhouse C. F., Lanar D. E. Baculovirus-mediated expression of Plasmodium falciparum erythrocyte binding antigen 175 polypeptides and their recognition by human antibodies. Infect Immun. 1997 Sep;65(9):3631–3637. doi: 10.1128/iai.65.9.3631-3637.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Depaulis F., Brazier L., Veuille M. Selective sweep at the Drosophila melanogaster Suppressor of Hairless locus and its association with the In(2L)t inversion polymorphism. Genetics. 1999 Jul;152(3):1017–1024. doi: 10.1093/genetics/152.3.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Depaulis F., Mousset S., Veuille M. Haplotype tests using coalescent simulations conditional on the number of segregating sites. Mol Biol Evol. 2001 Jun;18(6):1136–1138. doi: 10.1093/oxfordjournals.molbev.a003885. [DOI] [PubMed] [Google Scholar]
  12. Depaulis F., Veuille M. Neutrality tests based on the distribution of haplotypes under an infinite-site model. Mol Biol Evol. 1998 Dec;15(12):1788–1790. doi: 10.1093/oxfordjournals.molbev.a025905. [DOI] [PubMed] [Google Scholar]
  13. Dolan S. A., Proctor J. L., Alling D. W., Okubo Y., Wellems T. E., Miller L. H. Glycophorin B as an EBA-175 independent Plasmodium falciparum receptor of human erythrocytes. Mol Biochem Parasitol. 1994 Mar;64(1):55–63. doi: 10.1016/0166-6851(94)90134-1. [DOI] [PubMed] [Google Scholar]
  14. Escalante A. A., Ayala F. J. Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11373–11377. doi: 10.1073/pnas.91.24.11373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grantham R. Amino acid difference formula to help explain protein evolution. Science. 1974 Sep 6;185(4154):862–864. doi: 10.1126/science.185.4154.862. [DOI] [PubMed] [Google Scholar]
  17. Hudson R. R. Estimating the recombination parameter of a finite population model without selection. Genet Res. 1987 Dec;50(3):245–250. doi: 10.1017/s0016672300023776. [DOI] [PubMed] [Google Scholar]
  18. Hughes A. L., Verra F. Very large long-term effective population size in the virulent human malaria parasite Plasmodium falciparum. Proc Biol Sci. 2001 Sep 7;268(1478):1855–1860. doi: 10.1098/rspb.2001.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jones T. R., Narum D. L., Gozalo A. S., Aguiar J., Fuhrmann S. R., Liang H., Haynes J. D., Moch J. K., Lucas C., Luu T. Protection of Aotus monkeys by Plasmodium falciparum EBA-175 region II DNA prime-protein boost immunization regimen. J Infect Dis. 2000 Dec 8;183(2):303–312. doi: 10.1086/317933. [DOI] [PubMed] [Google Scholar]
  20. Lewontin R C. The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models. Genetics. 1964 Jan;49(1):49–67. doi: 10.1093/genetics/49.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liang H., Sim B. K. Conservation of structure and function of the erythrocyte-binding domain of Plasmodium falciparum EBA-175. Mol Biochem Parasitol. 1997 Feb;84(2):241–245. doi: 10.1016/s0166-6851(96)02791-0. [DOI] [PubMed] [Google Scholar]
  22. Maier Alexander G., Duraisingh Manoj T., Reeder John C., Patel Sheral S., Kazura James W., Zimmerman Peter A., Cowman Alan F. Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat Med. 2002 Dec 9;9(1):87–92. doi: 10.1038/nm807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mayer D. C. Ghislaine, Mu Jian-Bing, Feng Xiaorong, Su Xin-zhuan, Miller Louis H. Polymorphism in a Plasmodium falciparum erythrocyte-binding ligand changes its receptor specificity. J Exp Med. 2002 Dec 2;196(11):1523–1528. doi: 10.1084/jem.20020750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mayer D. C., Kaneko O., Hudson-Taylor D. E., Reid M. E., Miller L. H. Characterization of a Plasmodium falciparum erythrocyte-binding protein paralogous to EBA-175. Proc Natl Acad Sci U S A. 2001 Apr 17;98(9):5222–5227. doi: 10.1073/pnas.081075398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  26. McVean Gil, Awadalla Philip, Fearnhead Paul. A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics. 2002 Mar;160(3):1231–1241. doi: 10.1093/genetics/160.3.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Miller L. H., Mason S. J., Clyde D. F., McGinniss M. H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med. 1976 Aug 5;295(6):302–304. doi: 10.1056/NEJM197608052950602. [DOI] [PubMed] [Google Scholar]
  28. Mitchell G. H., Hadley T. J., McGinniss M. H., Klotz F. W., Miller L. H. Invasion of erythrocytes by Plasmodium falciparum malaria parasites: evidence for receptor heterogeneity and two receptors. Blood. 1986 May;67(5):1519–1521. [PubMed] [Google Scholar]
  29. Narum D. L., Haynes J. D., Fuhrmann S., Moch K., Liang H., Hoffman S. L., Sim B. K. Antibodies against the Plasmodium falciparum receptor binding domain of EBA-175 block invasion pathways that do not involve sialic acids. Infect Immun. 2000 Apr;68(4):1964–1966. doi: 10.1128/iai.68.4.1964-1966.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Narum David L., Fuhrmann Steven R., Luu Tin, Sim B. Kim Lee. A novel Plasmodium falciparum erythrocyte binding protein-2 (EBP2/BAEBL) involved in erythrocyte receptor binding. Mol Biochem Parasitol. 2002 Feb;119(2):159–168. doi: 10.1016/s0166-6851(01)00428-5. [DOI] [PubMed] [Google Scholar]
  31. Ockenhouse C. F., Barbosa A., Blackall D. P., Murphy C. I., Kashala O., Dutta S., Lanar D. E., Daugherty J. R. Sialic acid-dependent binding of baculovirus-expressed recombinant antigens from Plasmodium falciparum EBA-175 to Glycophorin A. Mol Biochem Parasitol. 2001 Mar;113(1):9–21. doi: 10.1016/s0166-6851(00)00375-3. [DOI] [PubMed] [Google Scholar]
  32. Okenu D. M., Riley E. M., Bickle Q. D., Agomo P. U., Barbosa A., Daugherty J. R., Lanar D. E., Conway D. J. Analysis of human antibodies to erythrocyte binding antigen 175 of Plasmodium falciparum. Infect Immun. 2000 Oct;68(10):5559–5566. doi: 10.1128/iai.68.10.5559-5566.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Okoyeh J. N., Pillai C. R., Chitnis C. E. Plasmodium falciparum field isolates commonly use erythrocyte invasion pathways that are independent of sialic acid residues of glycophorin A. Infect Immun. 1999 Nov;67(11):5784–5791. doi: 10.1128/iai.67.11.5784-5791.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ozwara H., Kocken C. H., Conway D. J., Mwenda J. M., Thomas A. W. Comparative analysis of Plasmodium reichenowi and P. falciparum erythrocyte-binding proteins reveals selection to maintain polymorphism in the erythrocyte-binding region of EBA-175. Mol Biochem Parasitol. 2001 Aug;116(1):81–84. doi: 10.1016/s0166-6851(01)00298-5. [DOI] [PubMed] [Google Scholar]
  35. Paget-McNicol S., Saul A. Mutation rates in the dihydrofolate reductase gene of Plasmodium falciparum. Parasitology. 2001 May;122(Pt 5):497–505. doi: 10.1017/s0031182001007739. [DOI] [PubMed] [Google Scholar]
  36. Paul R. E., Packer M. J., Walmsley M., Lagog M., Ranford-Cartwright L. C., Paru R., Day K. P. Mating patterns in malaria parasite populations of Papua New Guinea. Science. 1995 Sep 22;269(5231):1709–1711. doi: 10.1126/science.7569897. [DOI] [PubMed] [Google Scholar]
  37. Peterson D. S., Wellems T. E. EBL-1, a putative erythrocyte binding protein of Plasmodium falciparum, maps within a favored linkage group in two genetic crosses. Mol Biochem Parasitol. 2000 Jan 5;105(1):105–113. doi: 10.1016/s0166-6851(99)00173-5. [DOI] [PubMed] [Google Scholar]
  38. Polley S. D., Conway D. J. Strong diversifying selection on domains of the Plasmodium falciparum apical membrane antigen 1 gene. Genetics. 2001 Aug;158(4):1505–1512. doi: 10.1093/genetics/158.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Reed M. B., Caruana S. R., Batchelor A. H., Thompson J. K., Crabb B. S., Cowman A. F. Targeted disruption of an erythrocyte binding antigen in Plasmodium falciparum is associated with a switch toward a sialic acid-independent pathway of invasion. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7509–7514. doi: 10.1073/pnas.97.13.7509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sim B. K., Chitnis C. E., Wasniowska K., Hadley T. J., Miller L. H. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science. 1994 Jun 24;264(5167):1941–1944. doi: 10.1126/science.8009226. [DOI] [PubMed] [Google Scholar]
  41. Sim B. K., Orlandi P. A., Haynes J. D., Klotz F. W., Carter J. M., Camus D., Zegans M. E., Chulay J. D. Primary structure of the 175K Plasmodium falciparum erythrocyte binding antigen and identification of a peptide which elicits antibodies that inhibit malaria merozoite invasion. J Cell Biol. 1990 Nov;111(5 Pt 1):1877–1884. doi: 10.1083/jcb.111.5.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tajima F. The effect of change in population size on DNA polymorphism. Genetics. 1989 Nov;123(3):597–601. doi: 10.1093/genetics/123.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Triglia T., Thompson J. K., Cowman A. F. An EBA175 homologue which is transcribed but not translated in erythrocytic stages of Plasmodium falciparum. Mol Biochem Parasitol. 2001 Aug;116(1):55–63. doi: 10.1016/s0166-6851(01)00303-6. [DOI] [PubMed] [Google Scholar]
  45. Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]
  46. Wootton John C., Feng Xiaorong, Ferdig Michael T., Cooper Roland A., Mu Jianbing, Baruch Dror I., Magill Alan J., Su Xin-Zhuan. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature. 2002 Jul 18;418(6895):320–323. doi: 10.1038/nature00813. [DOI] [PubMed] [Google Scholar]
  47. Xainli J., Adams J. H., King C. L. The erythrocyte binding motif of plasmodium vivax duffy binding protein is highly polymorphic and functionally conserved in isolates from Papua New Guinea. Mol Biochem Parasitol. 2000 Dec;111(2):253–260. doi: 10.1016/s0166-6851(00)00315-7. [DOI] [PubMed] [Google Scholar]
  48. Yang Z, Bielawski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000 Dec 1;15(12):496–503. doi: 10.1016/S0169-5347(00)01994-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES