Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1996 Dec;104(Suppl 6):1159–1163. doi: 10.1289/ehp.961041159

Phenylguanine found in urine after benzene exposure.

K H Norpoth 1, G Müller 1, C Schell 1, E Jorg 1
PMCID: PMC1469737  PMID: 9118887

Abstract

Comparative investigations with synthetic N7-phenylguanine were carried out to clarify whether this compound is eliminated via the urine of rats as a benzene-derived nucleic acid adduct. As sensitive methods for detecting trace amounts of the compound, gas chromatography-mass spectroscopy, high performance liquid chromatography, and two immunoassays (enzyme-linked immunosorbent assay and fluoroimmunoassay) with appropriate monoclonal antibodies were used. The results indicate the excretion of several benzene-related guanine adducts slightly different from N7-phenylguanine that may possibly be hydroxylated. These adducts differ also from (O6-, N2- and C8-phenylguanine, respectively.

Full text

PDF
1162

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Autrup H., Seremet T. Excretion of benzo[a]pyrene-Gua adduct in the urine of benzo[a]pyrene-treated rats. Chem Biol Interact. 1986 Nov;60(2):217–226. doi: 10.1016/0009-2797(86)90030-x. [DOI] [PubMed] [Google Scholar]
  2. BOYLAND E., SIMS P. Metabolism of polycyclic compounds. 21. The metabolism of phenanthrene in rabbits and rats: dihydrodihydroxy compounds and related glucosiduronic acids. Biochem J. 1962 Sep;84:571–582. doi: 10.1042/bj0840571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bauer H., Dimitriadis E. A., Snyder R. An in vivo study of benzene metabolite DNA adduct formation in liver of male New Zealand rabbits. Arch Toxicol. 1989;63(3):209–213. doi: 10.1007/BF00316370. [DOI] [PubMed] [Google Scholar]
  4. Jowa L., Witz G., Snyder R., Winkle S., Kalf G. F. Synthesis and characterization of deoxyguanosine-benzoquinone adducts. J Appl Toxicol. 1990 Feb;10(1):47–54. doi: 10.1002/jat.2550100109. [DOI] [PubMed] [Google Scholar]
  5. Kalf G. F., Snyder R., Rushmore T. H. Inhibition of RNA synthesis by benzene metabolites and their covalent binding to DNA in rabbit bone marrow mitochondria in vitro. Am J Ind Med. 1985;7(5-6):485–492. doi: 10.1002/ajim.4700070512. [DOI] [PubMed] [Google Scholar]
  6. Kinoshita N., Gelboin H. V. Aryl hydrocarbon hydroxylase and polycyclic hydrocarbon tumorigenesis: effect of the enzyme inhibitor 7,8-benzoflavone on tumorigenesis and macromolecule binding. Proc Natl Acad Sci U S A. 1972 Apr;69(4):824–828. doi: 10.1073/pnas.69.4.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Krewet E., Verkoyen C., Müller G., Schell C., Popp W., Norpoth K. Studies on guanine adducts excreted in rat urine after benzene exposure. Carcinogenesis. 1993 Feb;14(2):245–250. doi: 10.1093/carcin/14.2.245. [DOI] [PubMed] [Google Scholar]
  8. Latriano L., Witz G., Goldstein B. D., Jeffrey A. M. Chromatographic and spectrophotometric characterization of adducts formed during the reaction of trans,trans-muconaldehyde with 14C-deoxyguanosine 5'-phosphate. Environ Health Perspect. 1989 Jul;82:249–251. doi: 10.1289/ehp.8982249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Norpoth K., Stücker W., Krewet E., Müller G. Biomonitoring of benzene exposure by trace analyses of phenylguanine. Int Arch Occup Environ Health. 1988;60(3):163–168. doi: 10.1007/BF00378692. [DOI] [PubMed] [Google Scholar]
  10. Pongracz K., Kaur S., Burlingame A. L., Bodell W. J. Detection of (3'-hydroxy)-3,N4-benzetheno-2'-deoxycytidine-3'-phosphate by 32P-postlabeling of DNA reacted with p-benzoquinone. Carcinogenesis. 1990 Sep;11(9):1469–1472. doi: 10.1093/carcin/11.9.1469. [DOI] [PubMed] [Google Scholar]
  11. Reddy M. V., Blackburn G. R., Irwin S. E., Kommineni C., Mackerer C. R., Mehlman M. A. A method for in vitro culture of rat Zymbal gland: use in mechanistic studies of benzene carcinogenesis in combination with 32P-postlabeling. Environ Health Perspect. 1989 Jul;82:239–247. doi: 10.1289/ehp.8982239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Reddy M. V., Blackburn G. R., Schreiner C. A., Mehlman M. A., Mackerer C. R. 32P analysis of DNA adducts in tissues of benzene-treated rats. Environ Health Perspect. 1989 Jul;82:253–257. doi: 10.1289/ehp.8982253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rushmore T., Snyder R., Kalf G. Covalent binding of benzene and its metabolites to DNA in rabbit bone marrow mitochondria in vitro. Chem Biol Interact. 1984 Apr;49(1-2):133–154. doi: 10.1016/0009-2797(84)90057-7. [DOI] [PubMed] [Google Scholar]
  14. Schell C., Verkoyen C., Krewet E., Müller G., Norpoth K. Production and characterization of monoclonal antibodies to N7-phenylguanine. J Cancer Res Clin Oncol. 1993;119(4):221–226. doi: 10.1007/BF01624434. [DOI] [PubMed] [Google Scholar]
  15. Shamsuddin A. K., Sinopoli N. T., Hemminki K., Boesch R. R., Harris C. C. Detection of benzo(a)pyrene:DNA adducts in human white blood cells. Cancer Res. 1985 Jan;45(1):66–68. [PubMed] [Google Scholar]
  16. Sims P. Metabolism of polycyclic compounds. 25. The metabolism of anthracene and some related compounds in rats. Biochem J. 1964 Sep;92(3):621–631. doi: 10.1042/bj0920621. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES