Abstract
Alveolar macrophages (AM) play a critical role in the removal of inhaled particles or fibers from the lung. Species differences in AM size may affect the number and size range of particles/fibers that can be actually phagocytized and cleared by AM. The purpose of this study was to compare the cell size of rat, hamster, monkey, and human AM by selective flow cytometric analysis of cell volume. Resident AM from CD rats, Syrian golden hamsters, cynomolgus monkeys, and nonsmoking, healthy human volunteers were harvested by standard bronchoalveolar lavage procedures. Morphometric analysis of AM was performed using a flow cytometer that generates volume signals based on the Coulter-type measurement of electrical resistance. We found that hamster and rat AM had diameters of 13.6 +/- 0.4 microns (n = 8) and 13.1 +/- 0.2 microns (n = 12), respectively. Comparatively, the AM from monkeys (15.3 +/- 0.5 microns, n = 7) and human volunteers (21.2 +/- 0.3 microns, n = 10) were larger than those from rats and hamsters. The AM from humans were significantly larger (p < 0.05) than those from all other species studied, corresponding to a 4-fold larger cell volume of human AM (4990 +/- 174 microns 3) compared to hamster (1328 +/- 123 microns 3) and rat (1166 +/- 42 microns 3) AM. In summary, we have found marked species differences in the cell size of AM. We suggest that the number and size range of particles/fibers that can be phagocytized and cleared by AM may differ among species due to inherent or acquired species differences in AM cell size.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Behr J., Vogelmeier C., Beinert T., Meurer M., Krombach F., König G., Fruhmann G. Bronchoalveolar lavage for evaluation and management of scleroderma disease of the lung. Am J Respir Crit Care Med. 1996 Aug;154(2 Pt 1):400–406. doi: 10.1164/ajrccm.154.2.8756813. [DOI] [PubMed] [Google Scholar]
- Castranova V., Bowman L., Miles P. R. Transmembrane potential and ionic content of rat alveolar macrophages. J Cell Physiol. 1979 Dec;101(3):471–479. doi: 10.1002/jcp.1041010313. [DOI] [PubMed] [Google Scholar]
- Crapo J. D., Young S. L., Fram E. K., Pinkerton K. E., Barry B. E., Crapo R. O. Morphometric characteristics of cells in the alveolar region of mammalian lungs. Am Rev Respir Dis. 1983 Aug;128(2 Pt 2):S42–S46. doi: 10.1164/arrd.1983.128.2P2.S42. [DOI] [PubMed] [Google Scholar]
- Davies P., Sornberger G. C., Engel E. E., Huber G. L. Stereology of lavaged populations of alveolar macrophages: effects of in vivo exposure to tobacco smoke. Exp Mol Pathol. 1978 Oct;29(2):170–182. doi: 10.1016/0014-4800(78)90037-0. [DOI] [PubMed] [Google Scholar]
- Dethloff L. A., Lehnert B. E. Pulmonary interstitial macrophages: isolation and flow cytometric comparisons with alveolar macrophages and blood monocytes. J Leukoc Biol. 1988 Jan;43(1):80–90. doi: 10.1002/jlb.43.1.80. [DOI] [PubMed] [Google Scholar]
- DiGregorio K. A., Cilento E. V., Lantz R. C. Heterogeneity in superoxide production as measured by nitro blue tetrazolium reduction from individual PAM. Am J Physiol. 1991 Jun;260(6 Pt 1):L464–L470. doi: 10.1152/ajplung.1991.260.6.L464. [DOI] [PubMed] [Google Scholar]
- Diamond M. S., Holian A. Biochemical properties of macrophage fractions and their relation to the mechanism of superoxide production. FEBS Lett. 1986 Mar 3;197(1-2):21–26. doi: 10.1016/0014-5793(86)80290-3. [DOI] [PubMed] [Google Scholar]
- Dörger M., Jesch N. K., Rieder G., Hirvonen M. R., Savolainen K., Krombach F., Messmer K. Species differences in NO formation by rat and hamster alveolar macrophages in vitro. Am J Respir Cell Mol Biol. 1997 Apr;16(4):413–420. doi: 10.1165/ajrcmb.16.4.9115752. [DOI] [PubMed] [Google Scholar]
- Garrick R. A., Polefka T. G., Cua W. O., Chinard F. P. Water permeability of alveolar macrophages. Am J Physiol. 1986 Oct;251(4 Pt 1):C524–C528. doi: 10.1152/ajpcell.1986.251.4.C524. [DOI] [PubMed] [Google Scholar]
- Haley P. J., Muggenburg B. A., Weissman D. N., Bice D. E. Comparative morphology and morphometry of alveolar macrophages from six species. Am J Anat. 1991 Aug;191(4):401–407. doi: 10.1002/aja.1001910407. [DOI] [PubMed] [Google Scholar]
- Hildemann S., Hammer C., Krombach F. Heterogeneity of alveolar macrophages in experimental silicosis. Environ Health Perspect. 1992 Jul;97:53–57. doi: 10.1289/ehp.929753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keller H. U., Fedier A., Rohner R. Relationship between light scattering in flow cytometry and changes in shape, volume, and actin polymerization in human polymorphonuclear leukocytes. J Leukoc Biol. 1995 Nov;58(5):519–525. doi: 10.1002/jlb.58.5.519. [DOI] [PubMed] [Google Scholar]
- Knecht E. A., Moorman W. J., Clark J. C., Lynch D. W., Lewis T. R. Pulmonary effects of acute vanadium pentoxide inhalation in monkeys. Am Rev Respir Dis. 1985 Dec;132(6):1181–1185. doi: 10.1164/arrd.1985.132.6.1181. [DOI] [PubMed] [Google Scholar]
- Krombach F., Fiehl E., Burkhardt D., Rienmüller R., König G., Adelmann-Grill B. C., Idel H., Rosenbruch M. Short-term and long-term effects of serial bronchoalveolar lavages in a nonhuman primate model. Am J Respir Crit Care Med. 1994 Jul;150(1):153–158. doi: 10.1164/ajrccm.150.1.8025742. [DOI] [PubMed] [Google Scholar]
- Krombach F., Gerlach J. T., Padovan C., Burges A., Behr J., Beinert T., Vogelmeier C. Characterization and quantification of alveolar monocyte-like cells in human chronic inflammatory lung disease. Eur Respir J. 1996 May;9(5):984–991. doi: 10.1183/09031936.96.09050984. [DOI] [PubMed] [Google Scholar]
- Lum H., Tyler W. S., Hyde D. M., Plopper C. G. Morphometry of in situ and lavaged pulmonary alveolar macrophages from control and ozone-exposed rats. Exp Lung Res. 1983 Jul;5(1):61–77. doi: 10.3109/01902148309061505. [DOI] [PubMed] [Google Scholar]
- Morrow P. E. Possible mechanisms to explain dust overloading of the lungs. Fundam Appl Toxicol. 1988 Apr;10(3):369–384. doi: 10.1016/0272-0590(88)90284-9. [DOI] [PubMed] [Google Scholar]
- Nibbering P. H., Zomerdijk T. P., Corsèl-Van Tilburg A. J., Van Furth R. Mean cell volume of human blood leucocytes and resident and activated murine macrophages. J Immunol Methods. 1990 May 8;129(1):143–145. doi: 10.1016/0022-1759(90)90432-u. [DOI] [PubMed] [Google Scholar]
- Oberdörster G., Ferin J., Morrow P. E. Volumetric loading of alveolar macrophages (AM): a possible basis for diminished AM-mediated particle clearance. Exp Lung Res. 1992 Jan-Mar;18(1):87–104. doi: 10.3109/01902149209020653. [DOI] [PubMed] [Google Scholar]
- Rebar A. H., DeNicola D. B., Muggenburg B. A. Bronchopulmonary lavage cytology in the dog: normal findings. Vet Pathol. 1980 May;17(3):294–304. doi: 10.1177/030098588001700303. [DOI] [PubMed] [Google Scholar]
- Strom K. A. Response of pulmonary cellular defenses to the inhalation of high concentrations of diesel exhaust. J Toxicol Environ Health. 1984;13(4-6):919–944. doi: 10.1080/15287398409530551. [DOI] [PubMed] [Google Scholar]
- Territo M. C., Golde D. W. The function of human alveolar macrophages. J Reticuloendothel Soc. 1979 Jan;25(1):111–120. [PubMed] [Google Scholar]
- Van Meir F. Planimetry of bronchoalveolar macrophages. Importance of preparation and staining techniques. Anal Quant Cytol Histol. 1991 Aug;13(4):261–268. [PubMed] [Google Scholar]
- Ward D. M., Perou C. M., Lloyd M., Kaplan J. "Synchronized" endocytosis and intracellular sorting in alveolar macrophages: the early sorting endosome is a transient organelle. J Cell Biol. 1995 Jun;129(5):1229–1240. doi: 10.1083/jcb.129.5.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeidler R. B., Kim H. D. Phagocytosis, chemiluminescence, and cell volume of alveolar macrophages from neonatal and adult pigs. J Leukoc Biol. 1985 Jan;37(1):29–43. doi: 10.1002/jlb.37.1.29. [DOI] [PubMed] [Google Scholar]