Skip to main content
Genetics logoLink to Genetics
. 2004 Jan;166(1):581–595. doi: 10.1534/genetics.166.1.581

A bivalent polyploid model for mapping quantitative trait loci in outcrossing tetraploids.

Rongling Wu 1, Chang-Xing Ma 1, George Casella 1
PMCID: PMC1470696  PMID: 15020446

Abstract

Two major aspects have made the genetic and genomic study of polyploids extremely difficult. First, increased allelic or nonallelic combinations due to multiple alleles result in complex gene actions and interactions for quantitative trait loci (QTL) in polyploids. Second, meiotic configurations in polyploids undergo a complex biological process including either bivalent or multivalent formation, or both. For bivalent polyploids, different degrees of preferential chromosome pairings may occur during meiosis. In this article, we develop a maximum-likelihood-based model for mapping QTL in tetraploids by considering the quantitative inheritance and meiotic mechanism of bivalent polyploids. This bivalent polyploid model is implemented with the EM algorithm to simultaneously estimate QTL position, QTL effects, and QTL-marker linkage phases by incorporating the impact of a cytological parameter determining bivalent chromosome pairings (the preferential pairing factor). Simulation studies are performed to investigate the performance and robustness of our statistical method for parameter estimation. The implication and extension of the bivalent polyploid model are discussed.

Full Text

The Full Text of this article is available as a PDF (301.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allendorf F. W., Danzmann R. G. Secondary tetrasomic segregation of MDH-B and preferential pairing of homeologues in rainbow trout. Genetics. 1997 Apr;145(4):1083–1092. doi: 10.1093/genetics/145.4.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Butruille D. V., Boiteux L. S. Selection-mutation balance in polysomic tetraploids: impact of double reduction and gametophytic selection on the frequency and subchromosomal localization of deleterious mutations. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6608–6613. doi: 10.1073/pnas.100101097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doerge R. W., Craig B. A. Model selection for quantitative trait locus analysis in polyploids. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7951–7956. doi: 10.1073/pnas.97.14.7951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grivet L., D'Hont A., Roques D., Feldmann P., Lanaud C., Glaszmann J. C. RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics. 1996 Mar;142(3):987–1000. doi: 10.1093/genetics/142.3.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hackett C. A. A comment on Xie and Xu: 'mapping quantitative trait loci in tetraploid species'. Genet Res. 2001 Oct;78(2):187–189. doi: 10.1017/s0016672301005262. [DOI] [PubMed] [Google Scholar]
  6. Hackett C. A., Bradshaw J. E., McNicol J. W. Interval mapping of quantitative trait loci in autotetraploid species. Genetics. 2001 Dec;159(4):1819–1832. doi: 10.1093/genetics/159.4.1819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hickok L. G. Homoeologous chromosome pairing: frequency differences in inbred and intraspecific hybrid polyploid ferns. Science. 1978 Dec 1;202(4371):982–984. doi: 10.1126/science.202.4371.982. [DOI] [PubMed] [Google Scholar]
  8. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Luo Z. W., Hackett C. A., Bradshaw J. E., McNicol J. W., Milbourne D. Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics. 2001 Mar;157(3):1369–1385. doi: 10.1093/genetics/157.3.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Meyer R. C., Milbourne D., Hackett C. A., Bradshaw J. E., McNichol J. W., Waugh R. Linkage analysis in tetraploid potato and association of markers with quantitative resistance to late blight (Phytophthora infestans). Mol Gen Genet. 1998 Aug;259(2):150–160. doi: 10.1007/s004380050800. [DOI] [PubMed] [Google Scholar]
  11. Ming R., Liu S. C., Lin Y. R., da Silva J., Wilson W., Braga D., van Deynze A., Wenslaff T. F., Wu K. K., Moore P. H. Detailed alignment of saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics. 1998 Dec;150(4):1663–1682. doi: 10.1093/genetics/150.4.1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ming R., Liu S. C., Moore P. H., Irvine J. E., Paterson A. H. QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res. 2001 Dec;11(12):2075–2084. doi: 10.1101/gr.198801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Otto S. P., Whitton J. Polyploid incidence and evolution. Annu Rev Genet. 2000;34:401–437. doi: 10.1146/annurev.genet.34.1.401. [DOI] [PubMed] [Google Scholar]
  14. Ripol M. I., Churchill G. A., da Silva J. A., Sorrells M. Statistical aspects of genetic mapping in autopolyploids. Gene. 1999 Jul 22;235(1-2):31–41. doi: 10.1016/s0378-1119(99)00218-8. [DOI] [PubMed] [Google Scholar]
  15. Silva J. A., Sorrells M. E., Burnquist W. L., Tanksley S. D. RFLP linkage map and genome analysis of Saccharum spontaneum. Genome. 1993 Aug;36(4):782–791. doi: 10.1139/g93-103. [DOI] [PubMed] [Google Scholar]
  16. Soltis P. S., Soltis D. E. The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7051–7057. doi: 10.1073/pnas.97.13.7051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sybenga J. Chromosome pairing affinity and quadrivalent formation in polyploids: do segmental allopolyploids exist? Genome. 1996 Dec;39(6):1176–1184. doi: 10.1139/g96-148. [DOI] [PubMed] [Google Scholar]
  18. Sybenga J. Preferential pairing estimates from multivalent frequencies in tetraploids. Genome. 1994 Dec;37(6):1045–1055. doi: 10.1139/g94-149. [DOI] [PubMed] [Google Scholar]
  19. Wu R., Gallo-Meagher M., Littell R. C., Zeng Z. B. A general polyploid model for analyzing gene segregation in outcrossing tetraploid species. Genetics. 2001 Oct;159(2):869–882. doi: 10.1093/genetics/159.2.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wu Rongling, Ma Chang-Xing, Painter Ian, Zeng Zhao-Bang. Simultaneous maximum likelihood estimation of linkage and linkage phases in outcrossing species. Theor Popul Biol. 2002 May;61(3):349–363. doi: 10.1006/tpbi.2002.1577. [DOI] [PubMed] [Google Scholar]
  21. Xie C., Xu S. Mapping quantitative trait loci in tetraploid populations. Genet Res. 2000 Aug;76(1):105–115. doi: 10.1017/s0016672399004395. [DOI] [PubMed] [Google Scholar]
  22. Yu K. F., Pauls K. P. Segregation of random amplified polymorphic DNA markers and strategies for molecular mapping in tetraploid alfalfa. Genome. 1993 Oct;36(5):844–851. doi: 10.1139/g93-112. [DOI] [PubMed] [Google Scholar]
  23. Zeven A. C. Polyploidy and domestication: the origin and survival of polyploids in cytotype mixtures. Basic Life Sci. 1979;13:385–407. doi: 10.1007/978-1-4613-3069-1_20. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES