Skip to main content
Genetics logoLink to Genetics
. 2004 Apr;166(4):1715–1725. doi: 10.1534/genetics.166.4.1715

The selective values of alleles in a molecular network model are context dependent.

Jean Peccoud 1, Kent Vander Velden 1, Dean Podlich 1, Chris Winkler 1, Lane Arthur 1, Mark Cooper 1
PMCID: PMC1470802  PMID: 15126392

Abstract

Classical quantitative genetics has applied linear modeling to the problem of mapping genotypic to phenotypic variation. Much of this theory was developed prior to the availability of molecular biology. The current understanding of the mechanisms of gene expression indicates the importance of nonlinear effects resulting from gene interactions. We provide a bridge between genetics and gene network theories by relating key concepts from quantitative genetics to the parameters, variables, and performance functions of genetic networks. We illustrate this methodology by simulating the genetic switch controlling galactose metabolism in yeast and its response to selection for a population of individuals. Results indicate that genes have heterogeneous contributions to phenotypes and that additive and nonadditive effects are context dependent. Early cycles of selection suggest strong additive effects attributed to some genes. Later cycles suggest the presence of strong context-dependent nonadditive effects that are conditional on the outcomes of earlier selection cycles. A single favorable allele cannot be consistently identified for most loci. These results highlight the complications that can arise with the presence of nonlinear effects associated with genes acting in networks when selection is conducted on a population of individuals segregating for the genes contributing to the network.

Full Text

The Full Text of this article is available as a PDF (312.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arkin A., Ross J., McAdams H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics. 1998 Aug;149(4):1633–1648. doi: 10.1093/genetics/149.4.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carroll Scott P., Dingle Hugh, Famula Thomas R. Rapid appearance of epistasis during adaptive divergence following colonization. Proc Biol Sci. 2003 Aug 7;270 (Suppl 1):S80–S83. doi: 10.1098/rsbl.2003.0019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheverud J. M., Routman E. J. Epistasis and its contribution to genetic variance components. Genetics. 1995 Mar;139(3):1455–1461. doi: 10.1093/genetics/139.3.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cook D. L., Gerber A. N., Tapscott S. J. Modeling stochastic gene expression: implications for haploinsufficiency. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15641–15646. doi: 10.1073/pnas.95.26.15641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cooper Mark, Chapman Scott C., Podlich Dean W., Hammer Graeme L. The GP problem: quantifying gene-to-phenotype relationships. In Silico Biol. 2002;2(2):151–164. [PubMed] [Google Scholar]
  6. Elena S. F., Lenski R. E. Epistasis between new mutations and genetic background and a test of genetic canalization. Evolution. 2001 Sep;55(9):1746–1752. doi: 10.1111/j.0014-3820.2001.tb00824.x. [DOI] [PubMed] [Google Scholar]
  7. Elowitz M. B., Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature. 2000 Jan 20;403(6767):335–338. doi: 10.1038/35002125. [DOI] [PubMed] [Google Scholar]
  8. Elowitz Michael B., Levine Arnold J., Siggia Eric D., Swain Peter S. Stochastic gene expression in a single cell. Science. 2002 Aug 16;297(5584):1183–1186. doi: 10.1126/science.1070919. [DOI] [PubMed] [Google Scholar]
  9. Eshed Y., Zamir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics. 1996 Aug;143(4):1807–1817. doi: 10.1093/genetics/143.4.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goss P. J., Peccoud J. Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6750–6755. doi: 10.1073/pnas.95.12.6750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guet Călin C., Elowitz Michael B., Hsing Weihong, Leibler Stanislas. Combinatorial synthesis of genetic networks. Science. 2002 May 24;296(5572):1466–1470. doi: 10.1126/science.1067407. [DOI] [PubMed] [Google Scholar]
  12. Hasty Jeff, McMillen David, Collins J. J. Engineered gene circuits. Nature. 2002 Nov 14;420(6912):224–230. doi: 10.1038/nature01257. [DOI] [PubMed] [Google Scholar]
  13. Houchmandzadeh Bahram, Wieschaus Eric, Leibler Stanislas. Establishment of developmental precision and proportions in the early Drosophila embryo. Nature. 2002 Feb 14;415(6873):798–802. doi: 10.1038/415798a. [DOI] [PubMed] [Google Scholar]
  14. Ideker T., Thorsson V., Ranish J. A., Christmas R., Buhler J., Eng J. K., Bumgarner R., Goodlett D. R., Aebersold R., Hood L. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science. 2001 May 4;292(5518):929–934. doi: 10.1126/science.292.5518.929. [DOI] [PubMed] [Google Scholar]
  15. Kaern Mads, Blake William J., Collins J. J. The engineering of gene regulatory networks. Annu Rev Biomed Eng. 2003;5:179–206. doi: 10.1146/annurev.bioeng.5.040202.121553. [DOI] [PubMed] [Google Scholar]
  16. Kemkemer Ralf, Schrank Stephanie, Vogel Walther, Gruler Hans, Kaufmann Dieter. Increased noise as an effect of haploinsufficiency of the tumor-suppressor gene neurofibromatosis type 1 in vitro. Proc Natl Acad Sci U S A. 2002 Oct 4;99(21):13783–13788. doi: 10.1073/pnas.212386999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leamy Larry J., Routman Eric J., Cheverud James M. An epistatic genetic basis for fluctuating asymmetry of mandible size in mice. Evolution. 2002 Mar;56(3):642–653. doi: 10.1111/j.0014-3820.2002.tb01373.x. [DOI] [PubMed] [Google Scholar]
  18. Li Z. K., Luo L. J., Mei H. W., Wang D. L., Shu Q. Y., Tabien R., Zhong D. B., Ying C. S., Stansel J. W., Khush G. S. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics. 2001 Aug;158(4):1737–1753. doi: 10.1093/genetics/158.4.1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li Z., Pinson S. R., Park W. D., Paterson A. H., Stansel J. W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics. 1997 Feb;145(2):453–465. doi: 10.1093/genetics/145.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Luo L. J., Li Z. K., Mei H. W., Shu Q. Y., Tabien R., Zhong D. B., Ying C. S., Stansel J. W., Khush G. S., Paterson A. H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics. 2001 Aug;158(4):1755–1771. doi: 10.1093/genetics/158.4.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McAdams H. H., Arkin A. It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet. 1999 Feb;15(2):65–69. doi: 10.1016/s0168-9525(98)01659-x. [DOI] [PubMed] [Google Scholar]
  22. Micallef K. P., Cooper M., Podlich D. W. Using clusters of computers for large QU-GENE simulation experiments. Bioinformatics. 2001 Feb;17(2):194–195. doi: 10.1093/bioinformatics/17.2.194. [DOI] [PubMed] [Google Scholar]
  23. Omholt S. W., Plahte E., Oyehaug L., Xiang K. Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. Genetics. 2000 Jun;155(2):969–980. doi: 10.1093/genetics/155.2.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Podlich D. W., Cooper M. QU-GENE: a simulation platform for quantitative analysis of genetic models. Bioinformatics. 1998;14(7):632–653. doi: 10.1093/bioinformatics/14.7.632. [DOI] [PubMed] [Google Scholar]
  25. Ronne H. Glucose repression in fungi. Trends Genet. 1995 Jan;11(1):12–17. doi: 10.1016/s0168-9525(00)88980-5. [DOI] [PubMed] [Google Scholar]
  26. Steinmetz Lars M., Sinha Himanshu, Richards Dan R., Spiegelman Jamie I., Oefner Peter J., McCusker John H., Davis Ronald W. Dissecting the architecture of a quantitative trait locus in yeast. Nature. 2002 Mar 21;416(6878):326–330. doi: 10.1038/416326a. [DOI] [PubMed] [Google Scholar]
  27. Weatherall D. J. Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias. Nat Rev Genet. 2001 Apr;2(4):245–255. doi: 10.1038/35066048. [DOI] [PubMed] [Google Scholar]
  28. Yano K., Fukasawa T. Galactose-dependent reversible interaction of Gal3p with Gal80p in the induction pathway of Gal4p-activated genes of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1721–1726. doi: 10.1073/pnas.94.5.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de Jong Hidde. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol. 2002;9(1):67–103. doi: 10.1089/10665270252833208. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES