Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Sep 15;26(18):4205–4213. doi: 10.1093/nar/26.18.4205

Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins.

L Aravind 1, D D Leipe 1, E V Koonin 1
PMCID: PMC147817  PMID: 9722641

Abstract

Iterative profile searches and structural modeling show that bacterial DnaG-type primases, small primase-like proteins from bacteria and archaea, type IA and type II topoisomerases, bacterial and archaeal nucleases of the OLD family and bacterial DNA repair proteins of the RecR/M family contain a common domain, designated Toprim (topoisomerase-primase) domain. The domain consists of approximately 100 amino acids and has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD). Examination of the structure of Topo IA and Topo II and modeling of the Toprim domains of the primases reveal a compact beta/alpha fold, with the conserved negatively charged residues juxtaposed, and inserts seen in Topo IA and Topo II. The conserved glutamate may act as a general base in nucleotide polymerization by primases and in strand rejoining by topoisomerases and as a general acid in strand cleavage by topoisomerases and nucleases. The role of this glutamate in catalysis is supported by site-directed mutagenesis data on primases and Topo IA. The DxD motif may coordinate Mg2+that is required for the activity of all Toprim-containing enzymes. The common ancestor of all life forms could encode a prototype Toprim enzyme that might have had both nucleotidyl transferase and polynucleotide cleaving activity.

Full Text

The Full Text of this article is available as a PDF (827.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abagyan R. A., Batalov S. Do aligned sequences share the same fold? J Mol Biol. 1997 Oct 17;273(1):355–368. doi: 10.1006/jmbi.1997.1287. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Boguski M. S., Gish W., Wootton J. C. Issues in searching molecular sequence databases. Nat Genet. 1994 Feb;6(2):119–129. doi: 10.1038/ng0294-119. [DOI] [PubMed] [Google Scholar]
  3. Altschul S. F., Gish W. Local alignment statistics. Methods Enzymol. 1996;266:460–480. doi: 10.1016/s0076-6879(96)66029-7. [DOI] [PubMed] [Google Scholar]
  4. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barrett J. W., Lauzon H. A., Mercuri P. S., Krell P. J., Sohi S. S., Arif B. M. The putative LEF-1 proteins from two distinct Choristoneura fumiferana multiple nucleopolyhedroviruses share domain homology to eukaryotic primases. Virus Genes. 1996;13(3):229–237. doi: 10.1007/BF00366983. [DOI] [PubMed] [Google Scholar]
  6. Barton G. J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 1993 Jan;6(1):37–40. doi: 10.1093/protein/6.1.37. [DOI] [PubMed] [Google Scholar]
  7. Berger J. M., Gamblin S. J., Harrison S. C., Wang J. C. Structure and mechanism of DNA topoisomerase II. Nature. 1996 Jan 18;379(6562):225–232. doi: 10.1038/379225a0. [DOI] [PubMed] [Google Scholar]
  8. Berger J. M., Wang J. C. Recent developments in DNA topoisomerase II structure and mechanism. Curr Opin Struct Biol. 1996 Feb;6(1):84–90. doi: 10.1016/s0959-440x(96)80099-6. [DOI] [PubMed] [Google Scholar]
  9. Bergerat A., de Massy B., Gadelle D., Varoutas P. C., Nicolas A., Forterre P. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature. 1997 Mar 27;386(6623):414–417. doi: 10.1038/386414a0. [DOI] [PubMed] [Google Scholar]
  10. Bork P., Koonin E. V. Predicting functions from protein sequences--where are the bottlenecks? Nat Genet. 1998 Apr;18(4):313–318. doi: 10.1038/ng0498-313. [DOI] [PubMed] [Google Scholar]
  11. Chen S. J., Wang J. C. Identification of active site residues in Escherichia coli DNA topoisomerase I. J Biol Chem. 1998 Mar 13;273(11):6050–6056. doi: 10.1074/jbc.273.11.6050. [DOI] [PubMed] [Google Scholar]
  12. Cheng C., Kussie P., Pavletich N., Shuman S. Conservation of structure and mechanism between eukaryotic topoisomerase I and site-specific recombinases. Cell. 1998 Mar 20;92(6):841–850. doi: 10.1016/s0092-8674(00)81411-7. [DOI] [PubMed] [Google Scholar]
  13. Courcelle J., Carswell-Crumpton C., Hanawalt P. C. recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3714–3719. doi: 10.1073/pnas.94.8.3714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Doherty A. J., Serpell L. C., Ponting C. P. The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res. 1996 Jul 1;24(13):2488–2497. doi: 10.1093/nar/24.13.2488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dracheva S., Koonin E. V., Crute J. J. Identification of the primase active site of the herpes simplex virus type 1 helicase-primase. J Biol Chem. 1995 Jun 9;270(23):14148–14153. doi: 10.1074/jbc.270.23.14148. [DOI] [PubMed] [Google Scholar]
  16. Edgell D. R., Doolittle W. F. Archaea and the origin(s) of DNA replication proteins. Cell. 1997 Jun 27;89(7):995–998. doi: 10.1016/s0092-8674(00)80285-8. [DOI] [PubMed] [Google Scholar]
  17. Galtier N., Gouy M., Gautier C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci. 1996 Dec;12(6):543–548. doi: 10.1093/bioinformatics/12.6.543. [DOI] [PubMed] [Google Scholar]
  18. Gorbalenya A. E., Koonin E. V. Superfamily of UvrA-related NTP-binding proteins. Implications for rational classification of recombination/repair systems. J Mol Biol. 1990 Jun 20;213(4):583–591. doi: 10.1016/S0022-2836(05)80243-8. [DOI] [PubMed] [Google Scholar]
  19. Griep M. A. Primase structure and function. Indian J Biochem Biophys. 1995 Aug;32(4):171–178. [PubMed] [Google Scholar]
  20. Guipaud O., Marguet E., Noll K. M., de la Tour C. B., Forterre P. Both DNA gyrase and reverse gyrase are present in the hyperthermophilic bacterium Thermotoga maritima. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10606–10611. doi: 10.1073/pnas.94.20.10606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Guzmán L. M., Espinosa M. The mobilization protein, MobM, of the streptococcal plasmid pMV158 specifically cleaves supercoiled DNA at the plasmid oriT. J Mol Biol. 1997 Mar 7;266(4):688–702. doi: 10.1006/jmbi.1996.0824. [DOI] [PubMed] [Google Scholar]
  22. Hall M. C., Ozsoy A. Z., Matson S. W. Site-directed mutations in motif VI of Escherichia coli DNA helicase II result in multiple biochemical defects: evidence for the involvement of motif VI in the coupling of ATPase and DNA binding activities via conformational changes. J Mol Biol. 1998 Mar 27;277(2):257–271. doi: 10.1006/jmbi.1997.1614. [DOI] [PubMed] [Google Scholar]
  23. Hegde S. P., Qin M. H., Li X. H., Atkinson M. A., Clark A. J., Rajagopalan M., Madiraju M. V. Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF-RecO-RecR complex in DNA repair and recombination. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14468–14473. doi: 10.1073/pnas.93.25.14468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Holm L., Sander C. Touring protein fold space with Dali/FSSP. Nucleic Acids Res. 1998 Jan 1;26(1):316–319. doi: 10.1093/nar/26.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hubbard T. J., Murzin A. G., Brenner S. E., Chothia C. SCOP: a structural classification of proteins database. Nucleic Acids Res. 1997 Jan 1;25(1):236–239. doi: 10.1093/nar/25.1.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ilyina T. V., Gorbalenya A. E., Koonin E. V. Organization and evolution of bacterial and bacteriophage primase-helicase systems. J Mol Evol. 1992 Apr;34(4):351–357. doi: 10.1007/BF00160243. [DOI] [PubMed] [Google Scholar]
  27. Jo K., Topal M. D. DNA topoisomerase and recombinase activities in Nae I restriction endonuclease. Science. 1995 Mar 24;267(5205):1817–1820. doi: 10.1126/science.7892605. [DOI] [PubMed] [Google Scholar]
  28. Jo K., Topal M. D. Effects on NaeI-DNA recognition of the leucine to lysine substitution that transforms restriction endonuclease NaeI to a topoisomerase: a model for restriction endonuclease evolution. Nucleic Acids Res. 1996 Nov 1;24(21):4171–4175. doi: 10.1093/nar/24.21.4171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Karlin S., Altschul S. F. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2264–2268. doi: 10.1073/pnas.87.6.2264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Koonin E. V., Gorbalenya A. E. The superfamily of UvrA-related ATPases includes three more subunits of putative ATP-dependent nucleases. Protein Seq Data Anal. 1992;5(1):43–45. [PubMed] [Google Scholar]
  31. Koonin E. V., Ilyina T. V. Computer-assisted dissection of rolling circle DNA replication. Biosystems. 1993;30(1-3):241–268. doi: 10.1016/0303-2647(93)90074-m. [DOI] [PubMed] [Google Scholar]
  32. Koonin E. V., Mushegian A. R., Galperin M. Y., Walker D. R. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Mol Microbiol. 1997 Aug;25(4):619–637. doi: 10.1046/j.1365-2958.1997.4821861.x. [DOI] [PubMed] [Google Scholar]
  33. Kusakabe T., Richardson C. C. The role of the zinc motif in sequence recognition by DNA primases. J Biol Chem. 1996 Aug 9;271(32):19563–19570. doi: 10.1074/jbc.271.32.19563. [DOI] [PubMed] [Google Scholar]
  34. Lima C. D., Wang J. C., Mondragón A. Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I. Nature. 1994 Jan 13;367(6459):138–146. doi: 10.1038/367138a0. [DOI] [PubMed] [Google Scholar]
  35. Lupas A. Prediction and analysis of coiled-coil structures. Methods Enzymol. 1996;266:513–525. doi: 10.1016/s0076-6879(96)66032-7. [DOI] [PubMed] [Google Scholar]
  36. Mendelman L. V. Characterization of DNA primases. Methods Enzymol. 1995;262:405–414. doi: 10.1016/0076-6879(95)62032-x. [DOI] [PubMed] [Google Scholar]
  37. Murzin A. G. A ribosomal protein module in EF-G and DNA gyrase. Nat Struct Biol. 1995 Jan;2(1):25–26. doi: 10.1038/nsb0195-25. [DOI] [PubMed] [Google Scholar]
  38. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  39. Mushegian A. R., Bassett D. E., Jr, Boguski M. S., Bork P., Koonin E. V. Positionally cloned human disease genes: patterns of evolutionary conservation and functional motifs. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5831–5836. doi: 10.1073/pnas.94.11.5831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Myung H., Calendar R. The old exonuclease of bacteriophage P2. J Bacteriol. 1995 Feb;177(3):497–501. doi: 10.1128/jb.177.3.497-501.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  42. Neuwald A. F., Liu J. S., Lawrence C. E. Gibbs motif sampling: detection of bacterial outer membrane protein repeats. Protein Sci. 1995 Aug;4(8):1618–1632. doi: 10.1002/pro.5560040820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Orlando V., Paro R. Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr Opin Genet Dev. 1995 Apr;5(2):174–179. doi: 10.1016/0959-437x(95)80005-0. [DOI] [PubMed] [Google Scholar]
  44. Peitsch M. C. Large scale protein modelling and model repository. Proc Int Conf Intell Syst Mol Biol. 1997;5:234–236. [PubMed] [Google Scholar]
  45. Peitsch M. C. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans. 1996 Feb;24(1):274–279. doi: 10.1042/bst0240274. [DOI] [PubMed] [Google Scholar]
  46. Rost B., Sander C., Schneider R. PHD--an automatic mail server for protein secondary structure prediction. Comput Appl Biosci. 1994 Feb;10(1):53–60. doi: 10.1093/bioinformatics/10.1.53. [DOI] [PubMed] [Google Scholar]
  47. Rost B., Schneider R., Sander C. Protein fold recognition by prediction-based threading. J Mol Biol. 1997 Jul 18;270(3):471–480. doi: 10.1006/jmbi.1997.1101. [DOI] [PubMed] [Google Scholar]
  48. Salas M. Protein-priming of DNA replication. Annu Rev Biochem. 1991;60:39–71. doi: 10.1146/annurev.bi.60.070191.000351. [DOI] [PubMed] [Google Scholar]
  49. Schuler G. D., Altschul S. F., Lipman D. J. A workbench for multiple alignment construction and analysis. Proteins. 1991;9(3):180–190. doi: 10.1002/prot.340090304. [DOI] [PubMed] [Google Scholar]
  50. Sekiguchi J., Shuman S. Site-specific ribonuclease activity of eukaryotic DNA topoisomerase I. Mol Cell. 1997 Dec;1(1):89–97. doi: 10.1016/s1097-2765(00)80010-6. [DOI] [PubMed] [Google Scholar]
  51. Shuman S. Polynucleotide ligase activity of eukaryotic topoisomerase I. Mol Cell. 1998 Apr;1(5):741–748. doi: 10.1016/s1097-2765(00)80073-8. [DOI] [PubMed] [Google Scholar]
  52. Smith D. R., Doucette-Stamm L. A., Deloughery C., Lee H., Dubois J., Aldredge T., Bashirzadeh R., Blakely D., Cook R., Gilbert K. Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol. 1997 Nov;179(22):7135–7155. doi: 10.1128/jb.179.22.7135-7155.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Steitz T. A. A mechanism for all polymerases. Nature. 1998 Jan 15;391(6664):231–232. doi: 10.1038/34542. [DOI] [PubMed] [Google Scholar]
  54. Strack B., Lessl M., Calendar R., Lanka E. A common sequence motif, -E-G-Y-A-T-A-, identified within the primase domains of plasmid-encoded I- and P-type DNA primases and the alpha protein of the Escherichia coli satellite phage P4. J Biol Chem. 1992 Jun 25;267(18):13062–13072. [PubMed] [Google Scholar]
  55. Tatusov R. L., Altschul S. F., Koonin E. V. Detection of conserved segments in proteins: iterative scanning of sequence databases with alignment blocks. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12091–12095. doi: 10.1073/pnas.91.25.12091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Tatusov R. L., Koonin E. V., Lipman D. J. A genomic perspective on protein families. Science. 1997 Oct 24;278(5338):631–637. doi: 10.1126/science.278.5338.631. [DOI] [PubMed] [Google Scholar]
  57. Tatusov R. L., Mushegian A. R., Bork P., Brown N. P., Hayes W. S., Borodovsky M., Rudd K. E., Koonin E. V. Metabolism and evolution of Haemophilus influenzae deduced from a whole-genome comparison with Escherichia coli. Curr Biol. 1996 Mar 1;6(3):279–291. doi: 10.1016/s0960-9822(02)00478-5. [DOI] [PubMed] [Google Scholar]
  58. Tougu K., Marians K. J. The extreme C terminus of primase is required for interaction with DnaB at the replication fork. J Biol Chem. 1996 Aug 30;271(35):21391–21397. doi: 10.1074/jbc.271.35.21391. [DOI] [PubMed] [Google Scholar]
  59. Tougu K., Peng H., Marians K. J. Identification of a domain of Escherichia coli primase required for functional interaction with the DnaB helicase at the replication fork. J Biol Chem. 1994 Feb 11;269(6):4675–4682. [PubMed] [Google Scholar]
  60. Traktman P. The enzymology of poxvirus DNA replication. Curr Top Microbiol Immunol. 1990;163:93–123. doi: 10.1007/978-3-642-75605-4_4. [DOI] [PubMed] [Google Scholar]
  61. Tse Y., Wang J. C. E. coli and M. luteus DNA topoisomerase I can catalyze catenation of decatenation of double-stranded DNA rings. Cell. 1980 Nov;22(1 Pt 1):269–276. doi: 10.1016/0092-8674(80)90174-9. [DOI] [PubMed] [Google Scholar]
  62. Urlacher T. M., Griep M. A. Magnesium acetate induces a conformational change in Escherichia coli primase. Biochemistry. 1995 Dec 26;34(51):16708–16714. doi: 10.1021/bi00051a020. [DOI] [PubMed] [Google Scholar]
  63. Varga-Weisz P. D., Wilm M., Bonte E., Dumas K., Mann M., Becker P. B. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature. 1997 Aug 7;388(6642):598–602. doi: 10.1038/41587. [DOI] [PubMed] [Google Scholar]
  64. Walker D. R., Koonin E. V. SEALS: a system for easy analysis of lots of sequences. Proc Int Conf Intell Syst Mol Biol. 1997;5:333–339. [PubMed] [Google Scholar]
  65. Wang J. C. DNA topoisomerases. Annu Rev Biochem. 1996;65:635–692. doi: 10.1146/annurev.bi.65.070196.003223. [DOI] [PubMed] [Google Scholar]
  66. Webb B. L., Cox M. M., Inman R. B. Recombinational DNA repair: the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell. 1997 Oct 31;91(3):347–356. doi: 10.1016/s0092-8674(00)80418-3. [DOI] [PubMed] [Google Scholar]
  67. Wilson J. A., Hill J. E., Kuzio J., Faulkner P. Characterization of the baculovirus Choristoneura fumiferana multicapsid nuclear polyhedrosis virus p10 gene indicates that the polypeptide contains a coiled-coil domain. J Gen Virol. 1995 Dec;76(Pt 12):2923–2932. doi: 10.1099/0022-1317-76-12-2923. [DOI] [PubMed] [Google Scholar]
  68. Wootton J. C., Federhen S. Analysis of compositionally biased regions in sequence databases. Methods Enzymol. 1996;266:554–571. doi: 10.1016/s0076-6879(96)66035-2. [DOI] [PubMed] [Google Scholar]
  69. Zhu C. X., Roche C. J., Papanicolaou N., DiPietrantonio A., Tse-Dinh Y. C. Site-directed mutagenesis of conserved aspartates, glutamates and arginines in the active site region of Escherichia coli DNA topoisomerase I. J Biol Chem. 1998 Apr 10;273(15):8783–8789. doi: 10.1074/jbc.273.15.8783. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES