Abstract
The dynamic Young's modulus E′ and loss modulus E″ were obtained for isolated bovine cornea using a direct-reading dynamic viscoelastometer. Within the temperature range (0-60°C) and frequency range (3.5-110 Hz) studied, both moduli were temperature and frequency independent. The dynamic birefringence of the cornea was measured in a special apparatus designed for this purpose in conjunction with the dynamic viscoelastometer. The stress-optical and strain-optical coefficients as well as the corresponding phase angles were evaluated as a function of temperature and frequency. The strain- and stress-optical coefficients were both temperature and frequency dependent.
Full text
PDF![1630](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d4a/1484163/ec497a253628/biophysj00716-0051.png)
![1631](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d4a/1484163/125f99e9f356/biophysj00716-0052.png)
![1632](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d4a/1484163/f536c7c0ec39/biophysj00716-0053.png)
![1633](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d4a/1484163/4f8077823357/biophysj00716-0054.png)
![1634](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d4a/1484163/f6461273814e/biophysj00716-0055.png)
![1635](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d4a/1484163/39ab6903a9ea/biophysj00716-0056.png)
![1636](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d4a/1484163/cb1062abeb8e/biophysj00716-0057.png)
![1637](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d4a/1484163/00ffc979527b/biophysj00716-0058.png)
![1638](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d4a/1484163/ce4b2a97fd30/biophysj00716-0059.png)
![1639](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d4a/1484163/9ce786c6ed07/biophysj00716-0060.png)
![1640](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d4a/1484163/106c046e3cf7/biophysj00716-0061.png)
![1641](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d4a/1484163/81ce0f1df4fd/biophysj00716-0062.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bettelheim F. A., Vinciguerra M. J. Low-angle laser scattering on bovine cornea. Biochim Biophys Acta. 1969 Apr 1;177(2):259–264. doi: 10.1016/0304-4165(69)90135-4. [DOI] [PubMed] [Google Scholar]
- Cejtlin J., Vinciguerra M. J., Bettelheim F. A. Changes in the molecular superstructure of bovine cornea under stress. Biochim Biophys Acta. 1971 Jun 22;237(3):530–536. doi: 10.1016/0304-4165(71)90273-x. [DOI] [PubMed] [Google Scholar]
- Hibbard R. R., Lyon C. S., Shepherd M. D., McBain E. H., McEwen W. K. Immediate rigidity of an eye. I. Whole, segments and strips. Exp Eye Res. 1970 Jan;9(1):137–143. doi: 10.1016/s0014-4835(70)80068-9. [DOI] [PubMed] [Google Scholar]
- Kaplan D., Bettelheim F. A. On the birefringence of bovine cornea. Exp Eye Res. 1972 May;13(3):219–226. doi: 10.1016/0014-4835(72)90103-0. [DOI] [PubMed] [Google Scholar]
- Kaplan D., Bettelheim F. A. Optico-mechanical properties of isolated bovine cornea. Biochim Biophys Acta. 1972 Aug 18;279(1):92–101. doi: 10.1016/0304-4165(72)90244-9. [DOI] [PubMed] [Google Scholar]
- Lyon C., McEwen W. K., Shepherd M. D. Ocular rigidity and decay curves analyzed by two nonlinear systems. Invest Ophthalmol. 1970 Dec;9(12):935–945. [PubMed] [Google Scholar]
- McEwen W. K., St Helen R. Rheology of the human sclera. Unifying formulation of ocular rigidity. Ophthalmologica. 1965;150(5):321–346. doi: 10.1159/000304862. [DOI] [PubMed] [Google Scholar]
- Rigby B. J. Relation between the shrinkage of native collagen in acid solution and the melting temperature of the tropocollagen molecule. Biochim Biophys Acta. 1967 Feb 21;133(2):272–277. doi: 10.1016/0005-2795(67)90067-0. [DOI] [PubMed] [Google Scholar]