Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1994 Jan;102(Suppl 1):77–82. doi: 10.1289/ehp.94102s177

Statistical models for genetic susceptibility in toxicological and epidemiological investigations.

W W Piegorsch 1
PMCID: PMC1566880  PMID: 8187729

Abstract

Models are presented for use in assessing genetic susceptibility to cancer (or other diseases) with animal or human data. Observations are assumed to be in the form of proportions, hence a binomial sampling distribution is considered. Generalized linear models are employed to model the response as a function of the genetic component; these include logistic and complementary log forms. Susceptibility is measured via odds ratios of response, relative to a background genetic group. Significance tests and confidence intervals for these odds ratios are based on maximum likelihood estimates of the regression parameters. Additional consideration is given to the problem of gene-environment interactions and to testing whether certain genetic identifiers/categories may be collapsed into a smaller set of categories. The collapsibility hypothesis provides an example of a mechanistic context wherein nonhierarchical models for the linear predictor can sometimes make sense.

Full text

PDF
81

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baan R. A., Fichtinger-Schepman A. M., Roza L., van der Schans G. P. Molecular dosimetry of genotoxic damage. Arch Toxicol Suppl. 1989;13:66–82. doi: 10.1007/978-3-642-74117-3_7. [DOI] [PubMed] [Google Scholar]
  2. Bishop J. M. The molecular genetics of cancer. Science. 1987 Jan 16;235(4786):305–311. doi: 10.1126/science.3541204. [DOI] [PubMed] [Google Scholar]
  3. Burmer G. C., Rabinovitch P. S., Loeb L. A. Analysis of c-Ki-ras mutations in human colon carcinoma by cell sorting, polymerase chain reaction, and DNA sequencing. Cancer Res. 1989 Apr 15;49(8):2141–2146. [PubMed] [Google Scholar]
  4. COCHRAN W. G. Estimation of bacterial densities by means of the "most probable number". Biometrics. 1950 Jun;6(2):105–116. [PubMed] [Google Scholar]
  5. Caporaso N. E., Tucker M. A., Hoover R. N., Hayes R. B., Pickle L. W., Issaq H. J., Muschik G. M., Green-Gallo L., Buivys D., Aisner S. Lung cancer and the debrisoquine metabolic phenotype. J Natl Cancer Inst. 1990 Aug 1;82(15):1264–1272. doi: 10.1093/jnci/82.15.1264. [DOI] [PubMed] [Google Scholar]
  6. Caporaso N., Hayes R. B., Dosemeci M., Hoover R., Ayesh R., Hetzel M., Idle J. Lung cancer risk, occupational exposure, and the debrisoquine metabolic phenotype. Cancer Res. 1989 Jul 1;49(13):3675–3679. [PubMed] [Google Scholar]
  7. Cartwright R. A., Philip P. A., Rogers H. J., Glashan R. W. Genetically determined debrisoquine oxidation capacity in bladder cancer. Carcinogenesis. 1984 Sep;5(9):1191–1192. doi: 10.1093/carcin/5.9.1191. [DOI] [PubMed] [Google Scholar]
  8. Cavenee W. K., Scrable H. J., James C. D. Molecular genetics of human cancer predisposition and progression. Mutat Res. 1991 Apr;247(2):199–202. doi: 10.1016/0027-5107(91)90015-g. [DOI] [PubMed] [Google Scholar]
  9. Chen C. L., Swallow W. H. Using group testing to estimate a proportion, and to test the binomial model. Biometrics. 1990 Dec;46(4):1035–1046. [PubMed] [Google Scholar]
  10. Collings B. J., Margolin B. H., Oehlert G. W. Analyses for binomial data, with application to the fluctuation test for mutagenicity. Biometrics. 1981 Dec;37(4):775–794. [PubMed] [Google Scholar]
  11. Cooper D. N., Clayton J. F. DNA polymorphism and the study of disease associations. Hum Genet. 1988 Apr;78(4):299–312. doi: 10.1007/BF00291724. [DOI] [PubMed] [Google Scholar]
  12. Fearon E. R., Feinberg A. P., Hamilton S. H., Vogelstein B. Loss of genes on the short arm of chromosome 11 in bladder cancer. 1985 Nov 28-Dec 4Nature. 318(6044):377–380. doi: 10.1038/318377a0. [DOI] [PubMed] [Google Scholar]
  13. Finkelstein D. M., Schoenfeld D. A. Analysis of multiple tumor data from a rodent carcinogenicity experiment. Biometrics. 1989 Mar;45(1):219–230. [PubMed] [Google Scholar]
  14. Hansen E. W. The development of maternal and infant behavior in the rhesus monkey. Behaviour. 1966;27(1):107–149. doi: 10.1163/156853966x00128. [DOI] [PubMed] [Google Scholar]
  15. Khoury M. J., Flanders W. D., Greenland S., Adams M. J. On the measurement of susceptibility in epidemiologic studies. Am J Epidemiol. 1989 Jan;129(1):183–190. doi: 10.1093/oxfordjournals.aje.a115107. [DOI] [PubMed] [Google Scholar]
  16. Malkinson A. M., Nesbitt M. N., Skamene E. Susceptibility to urethan-induced pulmonary adenomas between A/J and C57BL/6J mice: use of AXB and BXA recombinant inbred lines indicating a three-locus genetic model. J Natl Cancer Inst. 1985 Nov;75(5):971–974. doi: 10.1093/jnci/75.5.971. [DOI] [PubMed] [Google Scholar]
  17. Nebert D. W. Polymorphism of human CYP2D genes involved in drug metabolism: possible relationship to individual cancer risk. Cancer Cells. 1991 Mar;3(3):93–96. [PubMed] [Google Scholar]
  18. Ottman R. An epidemiologic approach to gene-environment interaction. Genet Epidemiol. 1990;7(3):177–185. doi: 10.1002/gepi.1370070302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Piegorsch W. W. One-sided significance tests for generalized linear models under dichotomous response. Biometrics. 1990 Jun;46(2):309–316. [PubMed] [Google Scholar]
  20. Pohl H., Reidy J. A. Vitamin C intake influences the bleomycin-induced chromosome damage assay: implications for detection of cancer susceptibility and chromosome breakage syndromes. Mutat Res. 1989 Oct;224(2):247–252. doi: 10.1016/0165-1218(89)90163-8. [DOI] [PubMed] [Google Scholar]
  21. Ryan J., Barker P. E., Nesbitt M. N., Ruddle F. H. KRAS2 as a genetic marker for lung tumor susceptibility in inbred mice. J Natl Cancer Inst. 1987 Dec;79(6):1351–1357. [PubMed] [Google Scholar]
  22. Scott J. M., Paterson N., Goldie H. Defibrination syndrome in abruptio placentae and ABO blood type. J Obstet Gynaecol Br Commonw. 1969 Sep;76(9):806–808. doi: 10.1111/j.1471-0528.1969.tb06182.x. [DOI] [PubMed] [Google Scholar]
  23. Sugimura H., Caporaso N. E., Modali R. V., Hoover R. N., Resau J. H., Trump B. F., Longergan J. A., Krontiris T. G., Mann D. L., Weston A. Association of rare alleles of the Harvey ras protooncogene locus with lung cancer. Cancer Res. 1990 Mar 15;50(6):1857–1862. [PubMed] [Google Scholar]
  24. Tamai S., Sugimura H., Caporaso N. E., Resau J. H., Trump B. F., Weston A., Harris C. C. Restriction fragment length polymorphism analysis of the L-myc gene locus in a case-control study of lung cancer. Int J Cancer. 1990 Sep 15;46(3):411–415. doi: 10.1002/ijc.2910460314. [DOI] [PubMed] [Google Scholar]
  25. Taylor J. A. Epidemiologic evidence of genetic susceptibility to cancer. Birth Defects Orig Artic Ser. 1990;26(1):113–127. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES