Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1981 Mar;56(3):203–207. doi: 10.1136/adc.56.3.203

Autosomal hypophosphataemic bone disease responds to 1,25-(OH)2D3.

C R Scriver, T Reade, F Halal, T Costa, D E Cole
PMCID: PMC1627154  PMID: 7212758

Abstract

We diagnosed non X-linked hypophosphataemic bone disease in a 38-month-old girl. Findings included: genu varum, shortened stature, fasting hypophosphataemia (2.3-2.5 mg/100 ml; 0.74-0.81 mmol/l), diminished theoretical renal threshold for phosphate (TmP/GFR), and osteomalacia without rickets. One patient (the father) had fasting hypophosphataemia (2.3-2.7 mg/100 ml; 0.74-0.87 mmol/l) and low TmP/GFR without osteomalacia or shortened stature. Treatment of the girl with 1,25-(OH)2D3 (1 microgram a day) raised the level of serum phosphorus, improved tubular reabsorption of phosphate, and healed the bone deformity; this combination of responses is not present in X-linked hypophosphataemia. There was no correction of hypophosphataemia or TmP/GFR with 1,25-(OH)2D3 treatment (1-3 micrograms a day) in the father.

Full text

PDF
203

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnaud C. D., Tsao H. S., Littledike T. Radioimmunoassay of human parathyroid hormone in serum. J Clin Invest. 1971 Jan;50(1):21–34. doi: 10.1172/JCI106476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brickman A. S., Coburn J. W., Kurokawa K., Bethune J. E., Harrison H. E., Norman A. W. Actions of 1,25-dihydroxycholecalciferol in patients with hypophosphatemic, vitamin-D-resistant rickets. N Engl J Med. 1973 Sep 6;289(10):495–498. doi: 10.1056/NEJM197309062891002. [DOI] [PubMed] [Google Scholar]
  3. Cowgill L. D., Goldfarb S., Lau K., Slatopolsky E., Agus Z. S. Evidence for an intrinsic renal tubular defect in mice with genetic hypophosphatemic rickets. J Clin Invest. 1979 Jun;63(6):1203–1210. doi: 10.1172/JCI109415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DeLuca H. F. The vitamin D system in the regulation of calcium and phosphorus metabolism. Nutr Rev. 1979 Jun;37(6):161–193. doi: 10.1111/j.1753-4887.1979.tb06660.x. [DOI] [PubMed] [Google Scholar]
  5. Dent C. E. A study of the behaviour of some sixty amino-acids and other ninhydrin-reacting substances on phenol-;collidine' filter-paper chromatograms, with notes as to the occurrence of some of them in biological fluids. Biochem J. 1948;43(2):169–180. [PMC free article] [PubMed] [Google Scholar]
  6. Eicher E. M., Southard J. L., Scriver C. R., Glorieux F. H. Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4667–4671. doi: 10.1073/pnas.73.12.4667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eisman J. A., Hamstra A. J., Kream B. E., DeLuca H. F. A sensitive, precise, and convenient method for determination of 1,25-dihydroxyvitamin D in human plasma. Arch Biochem Biophys. 1976 Sep;176(1):235–243. doi: 10.1016/0003-9861(76)90161-2. [DOI] [PubMed] [Google Scholar]
  8. GREENBERG B. G., WINTERS R. W., GRAHAM J. B. The normal range of serum inorganic phosphorus and its utility as a discriminant in the diagnosis of congenital hypophosphatemia. J Clin Endocrinol Metab. 1960 Mar;20:364–379. doi: 10.1210/jcem-20-3-364. [DOI] [PubMed] [Google Scholar]
  9. Glorieux F. H., Holick M. F., Scriver C. R., DeLuca H. F. X-linked hypophosphataemic rickets: Inadequate therapeutic response to 1,25-dihydroxycholecalciferol. Lancet. 1973 Aug 11;2(7824):287–289. doi: 10.1016/s0140-6736(73)90793-9. [DOI] [PubMed] [Google Scholar]
  10. Glorieux F., Scriver C. R. Loss of a parathyroid hormone-sensitive component of phosphate transport in X-linked hypophosphatemia. Science. 1972 Mar 3;175(4025):997–1000. doi: 10.1126/science.175.4025.997. [DOI] [PubMed] [Google Scholar]
  11. Scriver C. R., MacDonald W., Reade T., Glorieux R. H., Nogrady B. Hypophosphatemic nonrachitic bone disease: an entity distinct from X-linked hypophosphatemia in the renal defect, bone involvement, and inheritance. Am J Med Genet. 1977;1(1):101–117. doi: 10.1002/ajmg.1320010111. [DOI] [PubMed] [Google Scholar]
  12. Scriver C. R., Reade T. M., DeLuca H. F., Hamstra A. J. Serum 1,25-dihydroxyvitamin D levels in normal subjects and in patients with hereditary rickets or bone disease. N Engl J Med. 1978 Nov 2;299(18):976–979. doi: 10.1056/NEJM197811022991803. [DOI] [PubMed] [Google Scholar]
  13. Scriver C. R. Rickets and the pathogenesis of impaired tubular transport of phosphate and other solutes. Am J Med. 1974 Jul;57(1):43–49. doi: 10.1016/0002-9343(74)90766-9. [DOI] [PubMed] [Google Scholar]
  14. Tenenhouse H. S., Scriver C. R. Renal adaptation to phosphate deprivation in the Hyp mouse with X-linked hypophosphatemia. Can J Biochem. 1979 Jun;57(6):938–944. doi: 10.1139/o79-114. [DOI] [PubMed] [Google Scholar]
  15. Tenenhouse H. S., Scriver C. R. The defect in transcellular transport of phosphate in the nephron is located in brush-border membranes in X-linked hypophosphatemia (Hyp mouse model). Can J Biochem. 1978 Jun;56(6):640–646. doi: 10.1139/o78-096. [DOI] [PubMed] [Google Scholar]
  16. Tucci J. R., Perlstein R. S., Kopp L. E. The urine cyclic AMP response to parathyroid extract (PTE) administration in normal subjects and patients with parathyroid dysfunction. Metabolism. 1979 Aug;28(8):814–819. doi: 10.1016/0026-0495(79)90207-5. [DOI] [PubMed] [Google Scholar]
  17. Walton R. J., Bijvoet O. L. Nomogram for derivation of renal threshold phosphate concentration. Lancet. 1975 Aug 16;2(7929):309–310. doi: 10.1016/s0140-6736(75)92736-1. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES