Abstract
1 Crotamine (0.5 μg/ml) augmented the single twitch response of the rat and mouse isolated diaphragm to direct stimulation and prolonged the time course of contraction. At higher doses (10 to 50 μg/ml), contracture was observed with spontaneous fibrillation.
2 The resting membrane potential of diaphragm was rapidly depolarized to about -50 mV within 5 minutes. No increase of depolarization occurred on prolongation of the incubation time or increase of crotamine concentration from 0.5 μg/ml to 50 μg/ml. The effect was not reversed by washing.
3 Tetrodotoxin, low Na+ (12 mM), Ca2+ (10 mM) and procaine (1 mM) prevented the crotamine-depolarization. However, depolarization resumed when crotamine and the antagonists were removed.
4 Low Cl- (8.5 mM) and pretreatment with ouabain enhanced depolarization by crotamine.
5 High K+ (25 to 50 mM) prevented the further depolarization by crotamine and the membrane potential was restored to normal on washout of crotamine with normal Tyrode solution.
6 Effective membrane resistance was decreased by about 50% by crotamine.
7 24Na-influx of the rat diaphragm was increased by crotamine. 42K-influx was slightly increased if tetrodotoxin was also present but was decreased in the absence of tetrodotoxin.
8 No effect on the miniature and evoked endplate potential of the rat diaphragm was observed. Skeletal muscles from frog and chick were not affected.
9 It is inferred that crotamine acts on a molecule regulating the Na+ - permeability of the Na+ channel of murine muscles. It is proposed that extracellular K+ depresses the permeability of the Na+ channel by acting on the same regulator molecule.
Full text
PDF![551](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb8e/1668090/2b6742fc1e07/brjpharm00434-0128.png)
![552](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb8e/1668090/d57dbd7e4762/brjpharm00434-0129.png)
![553](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb8e/1668090/24fa6b00425f/brjpharm00434-0130.png)
![554](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb8e/1668090/4f0369535f93/brjpharm00434-0131.png)
![555](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb8e/1668090/a726dd534a2b/brjpharm00434-0132.png)
![556](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb8e/1668090/5ffb5e4e62ac/brjpharm00434-0133.png)
![557](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb8e/1668090/c4b14163b48e/brjpharm00434-0134.png)
![558](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb8e/1668090/809e0a0ceab3/brjpharm00434-0135.png)
![559](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb8e/1668090/3f50b012e110/brjpharm00434-0136.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARAKI T., OTANI T. Response of single motoneurons to direct stimulation in toad's spinal cord. J Neurophysiol. 1955 Sep;18(5):472–485. doi: 10.1152/jn.1955.18.5.472. [DOI] [PubMed] [Google Scholar]
- BARRIO A., BRAZIL O. V. Neuromuscular action of the Crotalus terrificus terrificus (Laur.) poisons. Acta Physiol Lat Am. 1951 Dec;1(4):291–308. [PubMed] [Google Scholar]
- Bartels-Bernal E., Rosenberry T. L., Daly J. W. Effect of batrachotoxin on the electroplax of electric eel: evidence for voltage-dependent interaction with sodium channels. Proc Natl Acad Sci U S A. 1977 Mar;74(3):951–955. doi: 10.1073/pnas.74.3.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Catterall W. A., Ray R., Morrow C. S. Membrane potential dependent binding of scorpion toxin to action potential Na+ ionophore. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2682–2686. doi: 10.1073/pnas.73.8.2682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheymol J., Bourillet F., Roch-Arveiller M., Thach Toan Effets neuromusculaires des venins des deux variétés de Crotalus durissus terrificus. Arch Int Pharmacodyn Ther. 1969 May;179(1):40–55. [PubMed] [Google Scholar]
- Cheymol J., Gonçalves J. M., Bourillet F., Roch-Arveiller M. Action neuromusculaire comparée de la crotamine et du venin de Crotalus durissus terrificus var. crotaminicus. 1. Sur préparations neuromusculaires in situ. Toxicon. 1971 Jul;9(3):279–286. doi: 10.1016/0041-0101(71)90081-x. [DOI] [PubMed] [Google Scholar]
- Cheymol J., Gonçalves J. M., Bourillet F., Roch-Arveiller M. Action neuromusculaire comparée de la crotamine et du venin de Crotalus durissus terrificus var. crotaminicus. 2. Sur préparations isolées. Toxicon. 1971 Jul;9(3):287–289. doi: 10.1016/0041-0101(71)90082-1. [DOI] [PubMed] [Google Scholar]
- Cohen M., Palti Y., Adelman W. J. Ionic dependence of sodium currents in squid axons analyzed in terms of specific ion "channel" interactions. J Membr Biol. 1975 Dec 4;24(3-4):201–223. doi: 10.1007/BF01868623. [DOI] [PubMed] [Google Scholar]
- Coraboeuf E., Deroubaix E., Tazieff-Depierre T. Effect of toxin II isolated from scorpion venom on action potential and contraction of mammalian heart. J Mol Cell Cardiol. 1975 Sep;7(9):643–653. doi: 10.1016/0022-2828(75)90141-8. [DOI] [PubMed] [Google Scholar]
- DEL CASTILLO J., KATZ B. Quantal components of the end-plate potential. J Physiol. 1954 Jun 28;124(3):560–573. doi: 10.1113/jphysiol.1954.sp005129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GINSBORG B. L., WARRINER J. The isolated chick biventer cervicis nerve-muscle preparation. Br J Pharmacol Chemother. 1960 Sep;15:410–411. doi: 10.1111/j.1476-5381.1960.tb01264.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gartner T. K., Land B., Podleski T. R. Genetic and physiological evidence concerning the development of chemically sensitive voltage-dependent inophores in L6 cells. J Neurobiol. 1976 Nov;7(6):537–549. doi: 10.1002/neu.480070607. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Habermann E., Cheng-Raude D. Central neurotoxicity of apamin, crotamin, phospholipase A and alpha-amanitin. Toxicon. 1975 Dec;13(6):465–473. doi: 10.1016/0041-0101(75)90176-2. [DOI] [PubMed] [Google Scholar]
- Laure C. J. Die Primärstruktur des Crotamins. Hoppe Seylers Z Physiol Chem. 1975 Feb;356(2):213–215. [PubMed] [Google Scholar]
- Narahashi T., Seyama I. Mechanism of nerve membrane depolarization caused by grayanotoxin I. J Physiol. 1974 Oct;242(2):471–487. doi: 10.1113/jphysiol.1974.sp010718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ravens U. Electromechanical studies of an Anemonia sulcata toxin in mammalian cardiac muscle. Naunyn Schmiedebergs Arch Pharmacol. 1976 Dec;296(1):73–78. doi: 10.1007/BF00498842. [DOI] [PubMed] [Google Scholar]
- Rochat H., Rochat C., Sampieri F., Miranda F., Lissitzky S. The amino-acid sequence of neurotoxin II of Androctonus australis Hector. Eur J Biochem. 1972 Jul 24;28(3):381–388. doi: 10.1111/j.1432-1033.1972.tb01924.x. [DOI] [PubMed] [Google Scholar]
- SCHENBERG S. Geographical pattern of crotamine distribution in the same rattlesnake subspecies. Science. 1959 May 15;129(3359):1361–1363. doi: 10.1126/science.129.3359.1361. [DOI] [PubMed] [Google Scholar]
- Seyama I. Effect of grayanotoxin 1 on the electrical properties of rat skeletal muscle fibers. Jpn J Physiol. 1970 Aug;20(4):381–393. doi: 10.2170/jjphysiol.20.381. [DOI] [PubMed] [Google Scholar]
- Warnick J. E., Albuquerque E. X., Diniz C. R. Electrophysiological observations on the action of the purified scorpion venom, tityustoxin, on nerve and skeletal muscle of the rat. J Pharmacol Exp Ther. 1976 Jul;198(1):155–167. [PubMed] [Google Scholar]
- Wunderer G., Machleidt W., Wachter E. Toxin II from Anemonia sulcata-the first sequence of a coelenterate toxin. Hoppe Seylers Z Physiol Chem. 1976 Feb;357(2):239–240. [PubMed] [Google Scholar]