Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1999 Oct 29;354(1390):1649–1673. doi: 10.1098/rstb.1999.0510

The pathophysiology of multiple sclerosis: the mechanisms underlying the production of symptoms and the natural history of the disease.

K J Smith 1, W I McDonald 1
PMCID: PMC1692682  PMID: 10603618

Abstract

The pathophysiology of multiple sclerosis is reviewed, with emphasis on the axonal conduction properties underlying the production of symptoms, and the course of the disease. The major cause of the negative symptoms during relapses (e.g. paralysis, blindness and numbness) is conduction block, caused largely by demyelination and inflammation, and possibly by defects in synaptic transmission and putative circulating blocking factors. Recovery from symptoms during remissions is due mainly to the restoration of axonal function, either by remyelination, the resolution of inflammation, or the restoration of conduction to axons which persist in the demyelinated state. Conduction in the latter axons shows a number of deficits, particularly with regard to the conduction of trains of impulses and these contribute to weakness and sensory problems. The mechanisms underlying the sensitivity of symptoms to changes in body temperature (Uhthoff's phenomenon) are discussed. The origin of 'positive' symptoms, such as tingling sensations, are described, including the generation of ectopic trains and bursts of impulses, ephaptic interactions between axons and/or neurons, the triggering of additional, spurious impulses by the transmission of normal impulses, the mechanosensitivity of axons underlying movement-induced sensations (e.g. Lhermitte's phenomenon) and pain. The clinical course of the disease is discussed, together with its relationship to the evolution of lesions as revealed by magnetic resonance imaging and spectroscopy. The earliest detectable event in the development of most new lesions is a breakdown of the blood-brain barrier in association with inflammation. Inflammation resolves after approximately one month, at which time there is an improvement in the symptoms. Demyelination occurs during the inflammatory phase of the lesion. An important mechanism determining persistent neurological deficit is axonal degeneration, although persistent conduction block arising from the failure of repair mechanisms probably also contributes.

Full Text

The Full Text of this article is available as a PDF (860.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avis S. P., Pryse-Phillips W. E. Sudden death in multiple sclerosis associated with sun exposure: a report of two cases. Can J Neurol Sci. 1995 Nov;22(4):305–307. doi: 10.1017/s0317167100039536. [DOI] [PubMed] [Google Scholar]
  2. BORNSTEIN M. B., CRAIN S. M. FUNCTIONAL STUDIES OF CULTURED BRAIN TISSUES AS RELATED TO "DEMYELINATIVE DISORDERS". Science. 1965 May 28;148(3674):1242–1244. doi: 10.1126/science.148.3674.1242. [DOI] [PubMed] [Google Scholar]
  3. BRICKNER R. M. The significance of localized vasoconstrictions in multiple sclerosis; transient, sudden miniature attacks of multiple sclerosis. Res Publ Assoc Res Nerv Ment Dis. 1950;28:236–244. [PubMed] [Google Scholar]
  4. Baker M., Bostock H. Ectopic activity in demyelinated spinal root axons of the rat. J Physiol. 1992;451:539–552. doi: 10.1113/jphysiol.1992.sp019178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barnes D., Munro P. M., Youl B. D., Prineas J. W., McDonald W. I. The longstanding MS lesion. A quantitative MRI and electron microscopic study. Brain. 1991 Jun;114(Pt 3):1271–1280. doi: 10.1093/brain/114.3.1271. [DOI] [PubMed] [Google Scholar]
  6. Baron-Van Evercooren A., Avellana-Adalid V., Lachapelle F., Liblau R. Schwann cell transplantation and myelin repair of the CNS. Mult Scler. 1997 Apr;3(2):157–161. doi: 10.1177/135245859700300219. [DOI] [PubMed] [Google Scholar]
  7. Bellinger F. P., Madamba S., Siggins G. R. Interleukin 1 beta inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus. Brain Res. 1993 Nov 19;628(1-2):227–234. doi: 10.1016/0006-8993(93)90959-q. [DOI] [PubMed] [Google Scholar]
  8. Berger J. R., Sheremata W. A. Persistent neurological deficit precipitated by hot bath test in multiple sclerosis. JAMA. 1983 Apr 1;249(13):1751–1753. [PubMed] [Google Scholar]
  9. Bever C. T., Jr The current status of studies of aminopyridines in patients with multiple sclerosis. Ann Neurol. 1994;36 (Suppl):S118–S121. doi: 10.1002/ana.410360728. [DOI] [PubMed] [Google Scholar]
  10. Bever C. T., Jr, Young D., Anderson P. A., Krumholz A., Conway K., Leslie J., Eddington N., Plaisance K. I., Panitch H. S., Dhib-Jalbut S. The effects of 4-aminopyridine in multiple sclerosis patients: results of a randomized, placebo-controlled, double-blind, concentration-controlled, crossover trial. Neurology. 1994 Jun;44(6):1054–1059. doi: 10.1212/wnl.44.6.1054. [DOI] [PubMed] [Google Scholar]
  11. Bianchi M., Sacerdote P., Ricciardi-Castagnoli P., Mantegazza P., Panerai A. E. Central effects of tumor necrosis factor alpha and interleukin-1 alpha on nociceptive thresholds and spontaneous locomotor activity. Neurosci Lett. 1992 Dec 14;148(1-2):76–80. doi: 10.1016/0304-3940(92)90808-k. [DOI] [PubMed] [Google Scholar]
  12. Black J. A., Felts P., Smith K. J., Kocsis J. D., Waxman S. G. Distribution of sodium channels in chronically demyelinated spinal cord axons: immuno-ultrastructural localization and electrophysiological observations. Brain Res. 1991 Mar 22;544(1):59–70. doi: 10.1016/0006-8993(91)90885-y. [DOI] [PubMed] [Google Scholar]
  13. Black J. A., Waxman S. G. Sodium channel expression: a dynamic process in neurons and non-neuronal cells. Dev Neurosci. 1996;18(3):139–152. doi: 10.1159/000111403. [DOI] [PubMed] [Google Scholar]
  14. Blakemore W. F., Smith K. J. Node-like axonal specializations along demyelinated central nerve fibres: ultrastructural observations. Acta Neuropathol. 1983;60(3-4):291–296. doi: 10.1007/BF00691879. [DOI] [PubMed] [Google Scholar]
  15. Blight A. R., Toombs J. P., Bauer M. S., Widmer W. R. The effects of 4-aminopyridine on neurological deficits in chronic cases of traumatic spinal cord injury in dogs: a phase I clinical trial. J Neurotrauma. 1991 Summer;8(2):103–119. doi: 10.1089/neu.1991.8.103. [DOI] [PubMed] [Google Scholar]
  16. Bolaños J. P., Almeida A., Stewart V., Peuchen S., Land J. M., Clark J. B., Heales S. J. Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem. 1997 Jun;68(6):2227–2240. doi: 10.1046/j.1471-4159.1997.68062227.x. [DOI] [PubMed] [Google Scholar]
  17. Bolaños J. P., Peuchen S., Heales S. J., Land J. M., Clark J. B. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J Neurochem. 1994 Sep;63(3):910–916. doi: 10.1046/j.1471-4159.1994.63030910.x. [DOI] [PubMed] [Google Scholar]
  18. Bostock H., Grafe P. Activity-dependent excitability changes in normal and demyelinated rat spinal root axons. J Physiol. 1985 Aug;365:239–257. doi: 10.1113/jphysiol.1985.sp015769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Bostock H., Sears T. A. Continuous conduction in demyelinated mammalian nerve fibers. Nature. 1976 Oct 28;263(5580):786–787. doi: 10.1038/263786a0. [DOI] [PubMed] [Google Scholar]
  20. Bostock H., Sears T. A., Sherratt R. M. The effects of 4-aminopyridine and tetraethylammonium ions on normal and demyelinated mammalian nerve fibres. J Physiol. 1981;313:301–315. doi: 10.1113/jphysiol.1981.sp013666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bostock H., Sears T. A. The internodal axon membrane: electrical excitability and continuous conduction in segmental demyelination. J Physiol. 1978 Jul;280:273–301. doi: 10.1113/jphysiol.1978.sp012384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Bostock H., Sherratt R. M., Sears T. A. Overcoming conduction failure in demyelinated nerve fibres by prolonging action potentials. Nature. 1978 Jul 27;274(5669):385–387. doi: 10.1038/274385a0. [DOI] [PubMed] [Google Scholar]
  23. Bowe C. M., Kocsis J. D., Targ E. F., Waxman S. G. Physiological effects of 4-aminopyridine on demyelinated mammalian motor and sensory fibers. Ann Neurol. 1987 Aug;22(2):264–268. doi: 10.1002/ana.410220212. [DOI] [PubMed] [Google Scholar]
  24. Breland A. E., Currier R. D. Scorpion venom and multiple sclerosis. Lancet. 1983 Oct 29;2(8357):1021–1021. doi: 10.1016/s0140-6736(83)90996-0. [DOI] [PubMed] [Google Scholar]
  25. Brinkmeier H., Kaspar A., Wiethölter H., Rüdel R. Interleukin-2 inhibits sodium currents in human muscle cells. Pflugers Arch. 1992 Apr;420(5-6):621–623. doi: 10.1007/BF00374643. [DOI] [PubMed] [Google Scholar]
  26. Brinkmeier H., Seewald M. J., Wollinsky K. H., Rüdel R. On the nature of endogenous antiexcitatory factors in the cerebrospinal fluid of patients with demyelinating neurological disease. Muscle Nerve. 1996 Jan;19(1):54–62. doi: 10.1002/(SICI)1097-4598(199601)19:1<54::AID-MUS7>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  27. Brinkmeier H., Wollinsky K. H., Seewald M. J., Hülser P. J., Mehrkens H. H., Kornhuber H. H., Rüdel R. Factors in the cerebrospinal fluid of multiple sclerosis patients interfering with voltage-dependent sodium channels. Neurosci Lett. 1993 Jun 25;156(1-2):172–175. doi: 10.1016/0304-3940(93)90465-w. [DOI] [PubMed] [Google Scholar]
  28. Brismar T. Specific permeability properties of demyelinated rat nerve fibres. Acta Physiol Scand. 1981 Oct;113(2):167–176. doi: 10.1111/j.1748-1716.1981.tb06878.x. [DOI] [PubMed] [Google Scholar]
  29. Brosnan C. F., Cannella B., Battistini L., Raine C. S. Cytokine localization in multiple sclerosis lesions: correlation with adhesion molecule expression and reactive nitrogen species. Neurology. 1995 Jun;45(6 Suppl 6):S16–S21. doi: 10.1212/wnl.45.6_suppl_6.s16. [DOI] [PubMed] [Google Scholar]
  30. Brosnan C. F., Litwak M. S., Schroeder C. E., Selmaj K., Raine C. S., Arezzo J. C. Preliminary studies of cytokine-induced functional effects on the visual pathways in the rabbit. J Neuroimmunol. 1989 Dec;25(2-3):227–239. doi: 10.1016/0165-5728(89)90141-0. [DOI] [PubMed] [Google Scholar]
  31. Brown G. C., Bolaños J. P., Heales S. J., Clark J. B. Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neurosci Lett. 1995 Jul 7;193(3):201–204. doi: 10.1016/0304-3940(95)11703-y. [DOI] [PubMed] [Google Scholar]
  32. Brück W., Bitsch A., Kolenda H., Brück Y., Stiefel M., Lassmann H. Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol. 1997 Nov;42(5):783–793. doi: 10.1002/ana.410420515. [DOI] [PubMed] [Google Scholar]
  33. Bunge M. B. Transplantation of purified populations of Schwann cells into lesioned adult rat spinal cord. J Neurol. 1994 Dec;242(1 Suppl 1):S36–S39. doi: 10.1007/BF00939240. [DOI] [PubMed] [Google Scholar]
  34. Burchiel K. J. Abnormal impulse generation in focally demyelinated trigeminal roots. J Neurosurg. 1980 Nov;53(5):674–683. doi: 10.3171/jns.1980.53.5.0674. [DOI] [PubMed] [Google Scholar]
  35. Burchiel K. J. Ectopic impulse generation in demyelinated axons: effects of PaCO2, pH, and disodium edetate. Ann Neurol. 1981 Apr;9(4):378–383. doi: 10.1002/ana.410090411. [DOI] [PubMed] [Google Scholar]
  36. Burke D. Microneurography, impulse conduction, and paresthesias. Muscle Nerve. 1993 Oct;16(10):1025–1032. doi: 10.1002/mus.880161005. [DOI] [PubMed] [Google Scholar]
  37. Bö L., Dawson T. M., Wesselingh S., Mörk S., Choi S., Kong P. A., Hanley D., Trapp B. D. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol. 1994 Nov;36(5):778–786. doi: 10.1002/ana.410360515. [DOI] [PubMed] [Google Scholar]
  38. Calvin W. H., Loeser J. D., Howe J. F. A neurophysiological theory for the pain mechanism of tic douloureux. Pain. 1977 Apr;3(2):147–154. doi: 10.1016/0304-3959(77)90078-1. [DOI] [PubMed] [Google Scholar]
  39. Carels G., Cerf J. A. Functional alterations produced in an isolated nerve center by serum from patients with multiple sclerosis. Int Arch Allergy Appl Immunol. 1969;36(Suppl):608–628. [PubMed] [Google Scholar]
  40. Carrieri P. B., Provitera V., De Rosa T., Tartaglia G., Gorga F., Perrella O. Profile of cerebrospinal fluid and serum cytokines in patients with relapsing-remitting multiple sclerosis: a correlation with clinical activity. Immunopharmacol Immunotoxicol. 1998 Aug;20(3):373–382. doi: 10.3109/08923979809034820. [DOI] [PubMed] [Google Scholar]
  41. Celesia G. G., Daly R. F. Visual electroencephalographic computer analysis (VECA). A new electrophysiologic test for the diagnosis of optic nerve lesions. Neurology. 1977 Jul;27(7):637–641. doi: 10.1212/wnl.27.7.637. [DOI] [PubMed] [Google Scholar]
  42. Cerf J. A., Carels G. Multiple sclerosis: serum factor producing reversible alterations in bioelectric responses. Science. 1966 May 20;152(3725):1066–1068. doi: 10.1126/science.152.3725.1066. [DOI] [PubMed] [Google Scholar]
  43. Chalk J. B., McCombe P. A., Pender M. P. Conduction abnormalities are restricted to the central nervous system in experimental autoimmune encephalomyelitis induced by inoculation with proteolipid protein but not with myelin basic protein. Brain. 1994 Oct;117(Pt 5):975–986. doi: 10.1093/brain/117.5.975. [DOI] [PubMed] [Google Scholar]
  44. Chalk J. B., McCombe P. A., Pender M. P. Restoration of conduction in the spinal roots correlates with clinical recovery from experimental autoimmune encephalomyelitis. Muscle Nerve. 1995 Oct;18(10):1093–1100. doi: 10.1002/mus.880181005. [DOI] [PubMed] [Google Scholar]
  45. Chandler S., Miller K. M., Clements J. M., Lury J., Corkill D., Anthony D. C., Adams S. E., Gearing A. J. Matrix metalloproteinases, tumor necrosis factor and multiple sclerosis: an overview. J Neuroimmunol. 1997 Feb;72(2):155–161. doi: 10.1016/s0165-5728(96)00179-8. [DOI] [PubMed] [Google Scholar]
  46. Chao C. C., Hu S., Peterson P. K. Glia, cytokines, and neurotoxicity. Crit Rev Neurobiol. 1995;9(2-3):189–205. [PubMed] [Google Scholar]
  47. Chiu S. Y., Ritchie J. M. Evidence for the presence of potassium channels in the paranodal region of acutely demyelinated mammalian single nerve fibres. J Physiol. 1981;313:415–437. doi: 10.1113/jphysiol.1981.sp013674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Crain S. M., Bornstein M. B. Depression of complex bioelectric discharges in cerebral tissue cultures by thermolabile complement-dependent serum factors. Exp Neurol. 1975 Oct;49(1 Pt 1):330–335. doi: 10.1016/0014-4886(75)90216-2. [DOI] [PubMed] [Google Scholar]
  49. Cross A. H., Manning P. T., Keeling R. M., Schmidt R. E., Misko T. P. Peroxynitrite formation within the central nervous system in active multiple sclerosis. J Neuroimmunol. 1998 Aug 1;88(1-2):45–56. doi: 10.1016/s0165-5728(98)00078-2. [DOI] [PubMed] [Google Scholar]
  50. Cummins T. R., Waxman S. G. Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J Neurosci. 1997 May 15;17(10):3503–3514. doi: 10.1523/JNEUROSCI.17-10-03503.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. D'Arcangelo G., Grassi F., Ragozzino D., Santoni A., Tancredi V., Eusebi F. Interferon inhibits synaptic potentiation in rat hippocampus. Brain Res. 1991 Nov 15;564(2):245–248. doi: 10.1016/0006-8993(91)91459-e. [DOI] [PubMed] [Google Scholar]
  52. Davie C. A., Barker G. J., Webb S., Tofts P. S., Thompson A. J., Harding A. E., McDonald W. I., Miller D. H. Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain. 1995 Dec;118(Pt 6):1583–1592. doi: 10.1093/brain/118.6.1583. [DOI] [PubMed] [Google Scholar]
  53. Davie C. A., Hawkins C. P., Barker G. J., Brennan A., Tofts P. S., Miller D. H., McDonald W. I. Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain. 1994 Feb;117(Pt 1):49–58. doi: 10.1093/brain/117.1.49. [DOI] [PubMed] [Google Scholar]
  54. Davis F. A., Becker F. O., Michael J. A., Sorensen E. Effect of intravenous sodium bicarbonate, disodium edetate (Na2EDTA), and hyperventilation on visual and oculomotor signs in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1970 Dec;33(6):723–732. doi: 10.1136/jnnp.33.6.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Davis F. A., Bergen D., Schauf C., McDonald I., Deutsch W. Movement phosphenes in optic neuritis: a new clinical sign. Neurology. 1976 Nov;26(11):1100–1104. doi: 10.1212/wnl.26.11.1100. [DOI] [PubMed] [Google Scholar]
  56. Davis F. A., Jacobson S. Altered thermal sensitivity in injured and demyelinated nerve. A possible model of temperature effects in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1971 Oct;34(5):551–561. doi: 10.1136/jnnp.34.5.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Davis F. A., Michael J. A., Tomaszewski J. S. Fluctuation of motor function in multiple sclerosis related to circadian temperature variations. Dis Nerv Syst. 1973 Jan;34(1):33–36. [PubMed] [Google Scholar]
  58. Davis F. A. Neurological deficits following the hot bath test in multiple sclerosis. JAMA. 1985 Jan 11;253(2):203–203. [PubMed] [Google Scholar]
  59. Davis F. A., Schauf C. L. Approaches to the development of pharmacological interventions in multiple sclerosis. Adv Neurol. 1981;31:505–510. [PubMed] [Google Scholar]
  60. Davis F. A., Schauf C. L., Reed B. J., Kesler R. L. Experimental studies of the effects of extrinsic factors on conduction in normal and demyelinated nerve. 1. Temperature. J Neurol Neurosurg Psychiatry. 1976 May;39(5):442–448. doi: 10.1136/jnnp.39.5.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. De Groot C. J., Ruuls S. R., Theeuwes J. W., Dijkstra C. D., Van der Valk P. Immunocytochemical characterization of the expression of inducible and constitutive isoforms of nitric oxide synthase in demyelinating multiple sclerosis lesions. J Neuropathol Exp Neurol. 1997 Jan;56(1):10–20. doi: 10.1097/00005072-199701000-00002. [DOI] [PubMed] [Google Scholar]
  62. Dugandzija-Novaković S., Koszowski A. G., Levinson S. R., Shrager P. Clustering of Na+ channels and node of Ranvier formation in remyelinating axons. J Neurosci. 1995 Jan;15(1 Pt 2):492–503. doi: 10.1523/JNEUROSCI.15-01-00492.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Dugandzija-Novaković S., Shrager P. Survival, development, and electrical activity of central nervous system myelinated axons exposed to tumor necrosis factor in vitro. J Neurosci Res. 1995 Jan 1;40(1):117–126. doi: 10.1002/jnr.490400113. [DOI] [PubMed] [Google Scholar]
  64. England J. D., Gamboni F., Levinson S. R., Finger T. E. Changed distribution of sodium channels along demyelinated axons. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6777–6780. doi: 10.1073/pnas.87.17.6777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. England J. D., Levinson S. R., Shrager P. Immunocytochemical investigations of sodium channels along nodal and internodal portions of demyelinated axons. Microsc Res Tech. 1996 Aug 1;34(5):445–451. doi: 10.1002/(SICI)1097-0029(19960801)34:5<445::AID-JEMT4>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  66. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Felts P. A., Baker T. A., Smith K. J. Conduction in segmentally demyelinated mammalian central axons. J Neurosci. 1997 Oct 1;17(19):7267–7277. doi: 10.1523/JNEUROSCI.17-19-07267.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Felts P. A., Kapoor R., Smith K. J. A mechanism for ectopic firing in central demyelinated axons. Brain. 1995 Oct;118(Pt 5):1225–1231. doi: 10.1093/brain/118.5.1225. [DOI] [PubMed] [Google Scholar]
  69. Felts P. A., Smith K. J. Conduction properties of central nerve fibers remyelinated by Schwann cells. Brain Res. 1992 Mar 6;574(1-2):178–192. doi: 10.1016/0006-8993(92)90815-q. [DOI] [PubMed] [Google Scholar]
  70. Felts P. A., Smith K. J. The use of potassium channel blocking agents in the therapy of demyelinating diseases. Ann Neurol. 1994 Sep;36(3):454–454. doi: 10.1002/ana.410360330. [DOI] [PubMed] [Google Scholar]
  71. Franklin R. J., Blakemore W. F. Requirements for Schwann cell migration within CNS environments: a viewpoint. Int J Dev Neurosci. 1993 Oct;11(5):641–649. doi: 10.1016/0736-5748(93)90052-F. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. GUTHRIE T. C. Visual and motor changes in patients with multiple sclerosis; a result of induced changes in environmental temperature. AMA Arch Neurol Psychiatry. 1951 Apr;65(4):437–451. doi: 10.1001/archneurpsyc.1951.02320040027002. [DOI] [PubMed] [Google Scholar]
  73. Ghatak N. R., Hirano A., Lijtmaer H., Zimmerman H. M. Asymptomatic demyelinated plaque in the spinal cord. Arch Neurol. 1974 Jun;30(6):484–486. doi: 10.1001/archneur.1974.00490360060012. [DOI] [PubMed] [Google Scholar]
  74. Ghezzi A., Montanini R., Basso P. F., Zaffaroni M., Massimo E., Cazzullo C. L. Epilepsy in multiple sclerosis. Eur Neurol. 1990;30(4):218–223. doi: 10.1159/000117350. [DOI] [PubMed] [Google Scholar]
  75. Gideon P., Henriksen O., Sperling B., Christiansen P., Olsen T. S., Jørgensen H. S., Arlien-Søborg P. Early time course of N-acetylaspartate, creatine and phosphocreatine, and compounds containing choline in the brain after acute stroke. A proton magnetic resonance spectroscopy study. Stroke. 1992 Nov;23(11):1566–1572. doi: 10.1161/01.str.23.11.1566. [DOI] [PubMed] [Google Scholar]
  76. Giovannoni G., Heales S. J., Silver N. C., O'Riordan J., Miller R. F., Land J. M., Clark J. B., Thompson E. J. Raised serum nitrate and nitrite levels in patients with multiple sclerosis. J Neurol Sci. 1997 Jan;145(1):77–81. doi: 10.1016/s0022-510x(96)00246-8. [DOI] [PubMed] [Google Scholar]
  77. Gledhill R. F., McDonald W. I. Morphological characteristics of central demyelination and remyelination: a single-fiber study. Ann Neurol. 1977 Jun;1(6):552–560. doi: 10.1002/ana.410010607. [DOI] [PubMed] [Google Scholar]
  78. Goldsmith P., Rowe D., Jäger R., Kapoor R. Focal vertebral artery dissection causing Brown-Séquard's syndrome. J Neurol Neurosurg Psychiatry. 1998 Mar;64(3):415–416. doi: 10.1136/jnnp.64.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Goodkin D. E. Interferon beta therapy for multiple sclerosis. Lancet. 1998 Nov 7;352(9139):1486–1487. doi: 10.1016/S0140-6736(98)00057-9. [DOI] [PubMed] [Google Scholar]
  80. Goodwin J. L., Uemura E., Cunnick J. E. Microglial release of nitric oxide by the synergistic action of beta-amyloid and IFN-gamma. Brain Res. 1995 Sep 18;692(1-2):207–214. doi: 10.1016/0006-8993(95)00646-8. [DOI] [PubMed] [Google Scholar]
  81. Goureau O., Amiot F., Dautry F., Courtois Y. Control of nitric oxide production by endogenous TNF-alpha in mouse retinal pigmented epithelial and Muller glial cells. Biochem Biophys Res Commun. 1997 Nov 7;240(1):132–135. doi: 10.1006/bbrc.1997.7581. [DOI] [PubMed] [Google Scholar]
  82. Guthikonda P., Baker J., Mattson D. H. Interferon-beta-1-b (IFN-B) decreases induced nitric oxide (NO) production by a human astrocytoma cell line. J Neuroimmunol. 1998 Mar 1;82(2):133–139. doi: 10.1016/s0165-5728(97)00172-0. [DOI] [PubMed] [Google Scholar]
  83. Hall G. L., Compston A., Scolding N. J. Beta-interferon and multiple sclerosis. Trends Neurosci. 1997 Feb;20(2):63–67. doi: 10.1016/s0166-2236(96)10071-0. [DOI] [PubMed] [Google Scholar]
  84. Halliday A. M., McDonald W. I., Mushin J. Delayed visual evoked response in optic neuritis. Lancet. 1972 May 6;1(7758):982–985. doi: 10.1016/s0140-6736(72)91155-5. [DOI] [PubMed] [Google Scholar]
  85. Halliday A. M., McDonald W. I., Mushin J. Visual evoked response in diagnosis of multiple sclerosis. Br Med J. 1973 Dec 15;4(5893):661–664. doi: 10.1136/bmj.4.5893.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Harbison J. W., Calabrese V. P., Edlich R. F. A fatal case of sun exposure in a multiple sclerosis patient. J Emerg Med. 1989 Sep-Oct;7(5):465–467. doi: 10.1016/0736-4679(89)90146-7. [DOI] [PubMed] [Google Scholar]
  87. Hartung H. P., Archelos J. J., Zielasek J., Gold R., Koltzenburg M., Reiners K. H., Toyka K. V. Circulating adhesion molecules and inflammatory mediators in demyelination: a review. Neurology. 1995 Jun;45(6 Suppl 6):S22–S32. doi: 10.1212/wnl.45.6_suppl_6.s22. [DOI] [PubMed] [Google Scholar]
  88. Hjorth R. J., Willison R. G. The electromyogram in facial myokymia and hemifacial spasm. J Neurol Sci. 1973 Oct;20(2):117–126. doi: 10.1016/0022-510x(73)90025-7. [DOI] [PubMed] [Google Scholar]
  89. Honmou O., Felts P. A., Waxman S. G., Kocsis J. D. Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. J Neurosci. 1996 May 15;16(10):3199–3208. doi: 10.1523/JNEUROSCI.16-10-03199.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Honmou O., Utzschneider D. A., Rizzo M. A., Bowe C. M., Waxman S. G., Kocsis J. D. Delayed depolarization and slow sodium currents in cutaneous afferents. J Neurophysiol. 1994 May;71(5):1627–1637. doi: 10.1152/jn.1994.71.5.1627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Hopper C. L., Matthews C. G., Cleeland C. S. Symptom instability and thermoregulation in multiple sclerosis. Neurology. 1972 Feb;22(2):142–148. doi: 10.1212/wnl.22.2.142. [DOI] [PubMed] [Google Scholar]
  92. Howe J. F., Calvin W. H., Loeser J. D. Impulses reflected from dorsal root ganglia and from focal nerve injuries. Brain Res. 1976 Oct 29;116(1):139–144. doi: 10.1016/0006-8993(76)90255-9. [DOI] [PubMed] [Google Scholar]
  93. Hu S., Sheng W. S., Peterson P. K., Chao C. C. Differential regulation by cytokines of human astrocyte nitric oxide production. Glia. 1995 Dec;15(4):491–494. doi: 10.1002/glia.440150412. [DOI] [PubMed] [Google Scholar]
  94. Hua L. L., Liu J. S., Brosnan C. F., Lee S. C. Selective inhibition of human glial inducible nitric oxide synthase by interferon-beta: implications for multiple sclerosis. Ann Neurol. 1998 Mar;43(3):384–387. doi: 10.1002/ana.410430317. [DOI] [PubMed] [Google Scholar]
  95. Huizar P., Kuno M., Miyata Y. Electrophysiological properties of spinal motoneurones of normal and dystrophic mice. J Physiol. 1975 Jun;248(1):231–246. doi: 10.1113/jphysiol.1975.sp010971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Hume A. L., Waxman S. G. Evoked potentials in suspected multiple sclerosis: diagnostic value and prediction of clinical course. J Neurol Sci. 1988 Feb;83(2-3):191–210. doi: 10.1016/0022-510x(88)90068-8. [DOI] [PubMed] [Google Scholar]
  97. Hölscher C. Nitric oxide, the enigmatic neuronal messenger: its role in synaptic plasticity. Trends Neurosci. 1997 Jul;20(7):298–303. doi: 10.1016/s0166-2236(97)01065-5. [DOI] [PubMed] [Google Scholar]
  98. Imaizumi T., Lankford K. L., Waxman S. G., Greer C. A., Kocsis J. D. Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. J Neurosci. 1998 Aug 15;18(16):6176–6185. doi: 10.1523/JNEUROSCI.18-16-06176.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Isaac C., Li D. K., Genton M., Jardine C., Grochowski E., Palmer M., Kastrukoff L. F., Oger J., Paty D. W. Multiple sclerosis: a serial study using MRI in relapsing patients. Neurology. 1988 Oct;38(10):1511–1515. doi: 10.1212/wnl.38.10.1511. [DOI] [PubMed] [Google Scholar]
  100. Jacobs L., Kaba S., Pullicino P. The lesion causing continuous facial myokymia in multiple sclerosis. Arch Neurol. 1994 Nov;51(11):1115–1119. doi: 10.1001/archneur.1994.00540230053012. [DOI] [PubMed] [Google Scholar]
  101. Jeffery N. D., Blakemore W. F. Locomotor deficits induced by experimental spinal cord demyelination are abolished by spontaneous remyelination. Brain. 1997 Jan;120(Pt 1):27–37. doi: 10.1093/brain/120.1.27. [DOI] [PubMed] [Google Scholar]
  102. Johnson A. W., Land J. M., Thompson E. J., Bolaños J. P., Clark J. B., Heales S. J. Evidence for increased nitric oxide production in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1995 Jan;58(1):107–107. doi: 10.1136/jnnp.58.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Kaji R., Happel L., Sumner A. J. Effect of digitalis on clinical symptoms and conduction variables in patients with multiple sclerosis. Ann Neurol. 1990 Oct;28(4):582–584. doi: 10.1002/ana.410280419. [DOI] [PubMed] [Google Scholar]
  104. Kaji R., Sumner A. J. Effect of digitalis on central demyelinative conduction block in vivo. Ann Neurol. 1989 Feb;25(2):159–165. doi: 10.1002/ana.410250209. [DOI] [PubMed] [Google Scholar]
  105. Kaji R., Sumner A. J. Ouabain reverses conduction disturbances in single demyelinated nerve fibers. Neurology. 1989 Oct;39(10):1364–1368. doi: 10.1212/wnl.39.10.1364. [DOI] [PubMed] [Google Scholar]
  106. Kaji R., Suzumura A., Sumner A. J. Physiological consequences of antiserum-mediated experimental demyelination in CNS. Brain. 1988 Jun;111(Pt 3):675–694. doi: 10.1093/brain/111.3.675. [DOI] [PubMed] [Google Scholar]
  107. Kanchandani R., Howe J. G. Lhermitte's sign in multiple sclerosis: a clinical survey and review of the literature. J Neurol Neurosurg Psychiatry. 1982 Apr;45(4):308–312. doi: 10.1136/jnnp.45.4.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Kapoor R., Brown P., Thompson P. D., Miller D. H. Propriospinal myoclonus in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1992 Nov;55(11):1086–1088. doi: 10.1136/jnnp.55.11.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Kapoor R., Li Y. G., Smith K. J. Slow sodium-dependent potential oscillations contribute to ectopic firing in mammalian demyelinated axons. Brain. 1997 Apr;120(Pt 4):647–652. doi: 10.1093/brain/120.4.647. [DOI] [PubMed] [Google Scholar]
  110. Kapoor R., Smith K. J., Felts P. A., Davies M. Internodal potassium currents can generate ectopic impulses in mammalian myelinated axons. Brain Res. 1993 May 14;611(1):165–169. doi: 10.1016/0006-8993(93)91790-y. [DOI] [PubMed] [Google Scholar]
  111. Kara P., Friedlander M. J. Dynamic modulation of cerebral cortex synaptic function by nitric oxide. Prog Brain Res. 1998;118:183–198. doi: 10.1016/s0079-6123(08)63208-2. [DOI] [PubMed] [Google Scholar]
  112. Katz D., Taubenberger J. K., Cannella B., McFarlin D. E., Raine C. S., McFarland H. F. Correlation between magnetic resonance imaging findings and lesion development in chronic, active multiple sclerosis. Ann Neurol. 1993 Nov;34(5):661–669. doi: 10.1002/ana.410340507. [DOI] [PubMed] [Google Scholar]
  113. Kermode A. G., Thompson A. J., Tofts P., MacManus D. G., Kendall B. E., Kingsley D. P., Moseley I. F., Rudge P., McDonald W. I. Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain. 1990 Oct;113(Pt 5):1477–1489. doi: 10.1093/brain/113.5.1477. [DOI] [PubMed] [Google Scholar]
  114. Kidd D., Barkhof F., McConnell R., Algra P. R., Allen I. V., Revesz T. Cortical lesions in multiple sclerosis. Brain. 1999 Jan;122(Pt 1):17–26. doi: 10.1093/brain/122.1.17. [DOI] [PubMed] [Google Scholar]
  115. Kilbinger H. Modulation of acetylcholine release by nitric oxide. Prog Brain Res. 1996;109:219–224. doi: 10.1016/s0079-6123(08)62105-6. [DOI] [PubMed] [Google Scholar]
  116. Koles Z. J., Rasminsky M. A computer simulation of conduction in demyelinated nerve fibres. J Physiol. 1972 Dec;227(2):351–364. doi: 10.1113/jphysiol.1972.sp010036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Kurtzke J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983 Nov;33(11):1444–1452. doi: 10.1212/wnl.33.11.1444. [DOI] [PubMed] [Google Scholar]
  118. Köller H., Buchholz J., Siebler M. Cerebrospinal fluid from multiple sclerosis patients inactivates neuronal Na+ current. Brain. 1996 Apr;119(Pt 2):457–463. doi: 10.1093/brain/119.2.457. [DOI] [PubMed] [Google Scholar]
  119. Largo C., Cuevas P., Somjen G. G., Martín del Río R., Herreras O. The effect of depressing glial function in rat brain in situ on ion homeostasis, synaptic transmission, and neuron survival. J Neurosci. 1996 Feb 1;16(3):1219–1229. doi: 10.1523/JNEUROSCI.16-03-01219.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Larsson H. B., Frederiksen J., Kjaer L., Henriksen O., Olesen J. In vivo determination of T1 and T2 in the brain of patients with severe but stable multiple sclerosis. Magn Reson Med. 1988 May;7(1):43–55. doi: 10.1002/mrm.1910070106. [DOI] [PubMed] [Google Scholar]
  121. Lee S. C., Dickson D. W., Brosnan C. F. Interleukin-1, nitric oxide and reactive astrocytes. Brain Behav Immun. 1995 Dec;9(4):345–354. doi: 10.1006/brbi.1995.1032. [DOI] [PubMed] [Google Scholar]
  122. Levine R. A., Gardner J. C., Fullerton B. C., Stufflebeam S. M., Furst M., Rosen B. R. Multiple sclerosis lesions of the auditory pons are not silent. Brain. 1994 Oct;117(Pt 5):1127–1141. doi: 10.1093/brain/117.5.1127. [DOI] [PubMed] [Google Scholar]
  123. Lewis R. A., Sumner A. J., Brown M. J., Asbury A. K. Multifocal demyelinating neuropathy with persistent conduction block. Neurology. 1982 Sep;32(9):958–964. doi: 10.1212/wnl.32.9.958. [DOI] [PubMed] [Google Scholar]
  124. Li Z., Chapleau M. W., Bates J. N., Bielefeldt K., Lee H. C., Abboud F. M. Nitric oxide as an autocrine regulator of sodium currents in baroreceptor neurons. Neuron. 1998 May;20(5):1039–1049. doi: 10.1016/s0896-6273(00)80484-5. [DOI] [PubMed] [Google Scholar]
  125. Liu J., Zhao M. L., Brosnan C. F., Lee S. C. Expression of type II nitric oxide synthase in primary human astrocytes and microglia: role of IL-1beta and IL-1 receptor antagonist. J Immunol. 1996 Oct 15;157(8):3569–3576. [PubMed] [Google Scholar]
  126. Losseff N. A., Webb S. L., O'Riordan J. I., Page R., Wang L., Barker G. J., Tofts P. S., McDonald W. I., Miller D. H., Thompson A. J. Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain. 1996 Jun;119(Pt 3):701–708. doi: 10.1093/brain/119.3.701. [DOI] [PubMed] [Google Scholar]
  127. Lumsden C. E., Howard L., Aparicio S. R. Anti-synaptic antibody in allergic encephalomyelitis. I. Neurophysiological studies, in guinea pigs, on the exposed cerebral cortex and peripheral nerves, following immunological challenges with myelin and synaptosomes. Brain Res. 1975 Aug 8;93(2):267–282. doi: 10.1016/0006-8993(75)90350-9. [DOI] [PubMed] [Google Scholar]
  128. Lumsden C. E., Howard L., Aparicio S. R., Bradbury M. Anti-synaptic antibody in allergic encephalomyelitis. II. The synapse-blocking effects in tissue culture of demyelinating sera from experimental allergic encephalomyelitis. Brain Res. 1975 Aug 8;93(2):283–299. doi: 10.1016/0006-8993(75)90351-0. [DOI] [PubMed] [Google Scholar]
  129. Maingret F., Fosset M., Lesage F., Lazdunski M., Honoré E. TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem. 1999 Jan 15;274(3):1381–1387. doi: 10.1074/jbc.274.3.1381. [DOI] [PubMed] [Google Scholar]
  130. Malhotra A. S., Goren H. The hot bath test in the diagnosis of multiple sclerosis. JAMA. 1981 Sep 4;246(10):1113–1114. [PubMed] [Google Scholar]
  131. Martiney J. A., Litwak M., Berman J. W., Arezzo J. C., Brosnan C. F. Pathophysiologic effect of interleukin-1b in the rabbit retina. Am J Pathol. 1990 Dec;137(6):1411–1423. [PMC free article] [PubMed] [Google Scholar]
  132. Matthews W. B. Paroxysmal symptoms in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1975 Jun;38(6):617–623. doi: 10.1136/jnnp.38.6.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. McDonald W. I. Mechanisms of functional loss and recovery in spinal cord damage. Ciba Found Symp. 1975;(34):23–33. doi: 10.1002/9780470720165.ch3. [DOI] [PubMed] [Google Scholar]
  134. McDonald W. I., Sears T. A. Effect of demyelination on conduction in the central nervous system. Nature. 1969 Jan 11;221(5176):182–183. doi: 10.1038/221182a0. [DOI] [PubMed] [Google Scholar]
  135. McDonald W. I., Sears T. A. The effects of experimental demyelination on conduction in the central nervous system. Brain. 1970;93(3):583–598. doi: 10.1093/brain/93.3.583. [DOI] [PubMed] [Google Scholar]
  136. Merrill J. E., Benveniste E. N. Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci. 1996 Aug;19(8):331–338. doi: 10.1016/0166-2236(96)10047-3. [DOI] [PubMed] [Google Scholar]
  137. Miller D. H., Rudge P., Johnson G., Kendall B. E., Macmanus D. G., Moseley I. F., Barnes D., McDonald W. I. Serial gadolinium enhanced magnetic resonance imaging in multiple sclerosis. Brain. 1988 Aug;111(Pt 4):927–939. doi: 10.1093/brain/111.4.927. [DOI] [PubMed] [Google Scholar]
  138. Miller L. G., Fahey J. M. Interleukin-1 modulates GABAergic and glutamatergic function in brain. Ann N Y Acad Sci. 1994 Oct 31;739:292–298. doi: 10.1111/j.1749-6632.1994.tb19831.x. [DOI] [PubMed] [Google Scholar]
  139. Milner B. A., Regan D., Heron J. R. Differential diagnosis of multiple sclerosis by visual evoked potential recording. Brain. 1974 Dec;97(4):755–772. doi: 10.1093/brain/97.1.755. [DOI] [PubMed] [Google Scholar]
  140. Mimura Y., Gotow T., Nishi T., Osame M. Mechanisms of hyperpolarization induced by two cytokines, hTNF alpha and hIL-1 alpha in neurons of the mollusc, Onchidium. Brain Res. 1994 Aug 8;653(1-2):112–118. doi: 10.1016/0006-8993(94)90378-6. [DOI] [PubMed] [Google Scholar]
  141. Moll C., Mourre C., Lazdunski M., Ulrich J. Increase of sodium channels in demyelinated lesions of multiple sclerosis. Brain Res. 1991 Aug 16;556(2):311–316. doi: 10.1016/0006-8993(91)90321-l. [DOI] [PubMed] [Google Scholar]
  142. Moreau T., Coles A., Wing M., Isaacs J., Hale G., Waldmann H., Compston A. Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. Brain. 1996 Feb;119(Pt 1):225–237. doi: 10.1093/brain/119.1.225. [DOI] [PubMed] [Google Scholar]
  143. Namerow N. S. Circadian temperature rhythm and vision in multiple sclerosis. Neurology. 1968 May;18(5):417–422. doi: 10.1212/wnl.18.5.417. [DOI] [PubMed] [Google Scholar]
  144. Navikas V., Link H. Review: cytokines and the pathogenesis of multiple sclerosis. J Neurosci Res. 1996 Aug 15;45(4):322–333. doi: 10.1002/(SICI)1097-4547(19960815)45:4<322::AID-JNR1>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  145. Nordin M., Nyström B., Wallin U., Hagbarth K. E. Ectopic sensory discharges and paresthesiae in patients with disorders of peripheral nerves, dorsal roots and dorsal columns. Pain. 1984 Nov;20(3):231–245. doi: 10.1016/0304-3959(84)90013-7. [DOI] [PubMed] [Google Scholar]
  146. Novakovic S. D., Deerinck T. J., Levinson S. R., Shrager P., Ellisman M. H. Clusters of axonal Na+ channels adjacent to remyelinating Schwann cells. J Neurocytol. 1996 Jun;25(6):403–412. doi: 10.1007/BF02284811. [DOI] [PubMed] [Google Scholar]
  147. Novakovic S. D., Levinson S. R., Schachner M., Shrager P. Disruption and reorganization of sodium channels in experimental allergic neuritis. Muscle Nerve. 1998 Aug;21(8):1019–1032. doi: 10.1002/(sici)1097-4598(199808)21:8<1019::aid-mus6>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  148. O'Riordan J. I., Losseff N. A., Phatouros C., Thompson A. J., Moseley I. F., MacManus D. G., McDonald W. I., Miller D. H. Asymptomatic spinal cord lesions in clinically isolated optic nerve, brain stem, and spinal cord syndromes suggestive of demyelination. J Neurol Neurosurg Psychiatry. 1998 Mar;64(3):353–357. doi: 10.1136/jnnp.64.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Oleszak E. L., Zaczynska E., Bhattacharjee M., Butunoi C., Legido A., Katsetos C. D. Inducible nitric oxide synthase and nitrotyrosine are found in monocytes/macrophages and/or astrocytes in acute, but not in chronic, multiple sclerosis. Clin Diagn Lab Immunol. 1998 Jul;5(4):438–445. doi: 10.1128/cdli.5.4.438-445.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Ormerod I. E., Miller D. H., McDonald W. I., du Boulay E. P., Rudge P., Kendall B. E., Moseley I. F., Johnson G., Tofts P. S., Halliday A. M. The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions. A quantitative study. Brain. 1987 Dec;110(Pt 6):1579–1616. doi: 10.1093/brain/110.6.1579. [DOI] [PubMed] [Google Scholar]
  151. Osterman P. O. Paroxysmal itching in multiple sclerosis. Br J Dermatol. 1976 Nov;95(5):555–558. doi: 10.1111/j.1365-2133.1976.tb00869.x. [DOI] [PubMed] [Google Scholar]
  152. Ostermann P. O., Westerberg C. E. Paroxysmal attacks in multiple sclerosis. Brain. 1975 Jun;98(2):189–202. doi: 10.1093/brain/98.2.189. [DOI] [PubMed] [Google Scholar]
  153. Paintal A. S. The influence of diameter of medullated nerve fibres of cats on the rising and falling phases of the spike and its recovery. J Physiol. 1966 Jun;184(4):791–811. doi: 10.1113/jphysiol.1966.sp007948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Park H. J., Won C. K., Pyun K. H., Shin H. C. Interleukin 2 suppresses afferent sensory transmission in the primary somatosensory cortex. Neuroreport. 1995 May 9;6(7):1018–1020. doi: 10.1097/00001756-199505090-00017. [DOI] [PubMed] [Google Scholar]
  155. Pencek T. L., Schauf C. L., Low P. A., Eisenberg B. R., Davis F. A. Disruption of the perineurium in amphibian peripheral nerve: morphology and physiology. Neurology. 1980 Jun;30(6):593–599. doi: 10.1212/wnl.30.6.593. [DOI] [PubMed] [Google Scholar]
  156. Pender M. P. Recovery from acute experimental allergic encephalomyelitis in the Lewis rat. Early restoration of nerve conduction and repair by Schwann cells and oligodendrocytes. Brain. 1989 Apr;112(Pt 2):393–416. doi: 10.1093/brain/112.2.393. [DOI] [PubMed] [Google Scholar]
  157. Pender M. P., Sears T. A. The pathophysiology of acute experimental allergic encephalomyelitis in the rabbit. Brain. 1984 Sep;107(Pt 3):699–726. doi: 10.1093/brain/107.3.699. [DOI] [PubMed] [Google Scholar]
  158. Pender M. P. The pathophysiology of acute experimental allergic encephalomyelitis induced by whole spinal cord in the Lewis rat. J Neurol Sci. 1988 Apr;84(2-3):209–222. doi: 10.1016/0022-510x(88)90126-8. [DOI] [PubMed] [Google Scholar]
  159. Pender M. P. The pathophysiology of myelin basic protein-induced acute experimental allergic encephalomyelitis in the Lewis rat. J Neurol Sci. 1988 Sep;86(2-3):277–289. doi: 10.1016/0022-510x(88)90105-0. [DOI] [PubMed] [Google Scholar]
  160. Petersen P., Kastrup J., Zeeberg I., Boysen G. Chronic pain treatment with intravenous lidocaine. Neurol Res. 1986 Sep;8(3):189–190. doi: 10.1080/01616412.1986.11739753. [DOI] [PubMed] [Google Scholar]
  161. Phadke J. G., Best P. V. Atypical and clinically silent multiple sclerosis: a report of 12 cases discovered unexpectedly at necropsy. J Neurol Neurosurg Psychiatry. 1983 May;46(5):414–420. doi: 10.1136/jnnp.46.5.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Prineas J. W., Barnard R. O., Kwon E. E., Sharer L. R., Cho E. S. Multiple sclerosis: remyelination of nascent lesions. Ann Neurol. 1993 Feb;33(2):137–151. doi: 10.1002/ana.410330203. [DOI] [PubMed] [Google Scholar]
  163. Prineas J. W., Connell F. Remyelination in multiple sclerosis. Ann Neurol. 1979 Jan;5(1):22–31. doi: 10.1002/ana.410050105. [DOI] [PubMed] [Google Scholar]
  164. Rasminsky M. Ectopic generation of impulses and cross-talk in spinal nerve roots of "dystrophic" mice. Ann Neurol. 1978 Apr;3(4):351–357. doi: 10.1002/ana.410030413. [DOI] [PubMed] [Google Scholar]
  165. Rasminsky M. Ephaptic transmission between single nerve fibres in the spinal nerve roots of dystrophic mice. J Physiol. 1980 Aug;305:151–169. doi: 10.1113/jphysiol.1980.sp013356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Rasminsky M. Hyperexcitability of pathologically myelinated axons and positive symptoms in multiple sclerosis. Adv Neurol. 1981;31:289–297. [PubMed] [Google Scholar]
  167. Rasminsky M., Sears T. A. Internodal conduction in undissected demyelinated nerve fibres. J Physiol. 1972 Dec;227(2):323–350. doi: 10.1113/jphysiol.1972.sp010035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Rasminsky M. Spontaneous activity and cross-talk in pathological nerve fibers. Res Publ Assoc Res Nerv Ment Dis. 1987;65:39–49. [PubMed] [Google Scholar]
  169. Rasminsky M. The effects of temperature on conduction in demyelinated single nerve fibers. Arch Neurol. 1973 May;28(5):287–292. doi: 10.1001/archneur.1973.00490230023001. [DOI] [PubMed] [Google Scholar]
  170. Redford E. J., Kapoor R., Smith K. J. Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain. 1997 Dec;120(Pt 12):2149–2157. doi: 10.1093/brain/120.12.2149. [DOI] [PubMed] [Google Scholar]
  171. Revesz T., Kidd D., Thompson A. J., Barnard R. O., McDonald W. I. A comparison of the pathology of primary and secondary progressive multiple sclerosis. Brain. 1994 Aug;117(Pt 4):759–765. doi: 10.1093/brain/117.4.759. [DOI] [PubMed] [Google Scholar]
  172. Ridet J. L., Malhotra S. K., Privat A., Gage F. H. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 1997 Dec;20(12):570–577. doi: 10.1016/s0166-2236(97)01139-9. [DOI] [PubMed] [Google Scholar]
  173. Rivera-Quiñones C., McGavern D., Schmelzer J. D., Hunter S. F., Low P. A., Rodriguez M. Absence of neurological deficits following extensive demyelination in a class I-deficient murine model of multiple sclerosis. Nat Med. 1998 Feb;4(2):187–193. doi: 10.1038/nm0298-187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Rizzo M. A., Kocsis J. D., Waxman S. G. Mechanisms of paresthesiae, dysesthesiae, and hyperesthesiae: role of Na+ channel heterogeneity. Eur Neurol. 1996;36(1):3–12. doi: 10.1159/000117192. [DOI] [PubMed] [Google Scholar]
  175. Robinson K., Rudge P. Abnormalities of the auditory evoked potentials in patients with multiple sclerosis. Brain. 1977 Mar;100(Pt 1):19–40. doi: 10.1093/brain/100.1.19. [DOI] [PubMed] [Google Scholar]
  176. Rosenbluth J., Blakemore W. F. Structural specializations in cat of chronically demyelinated spinal cord axons as seen in freeze-fracture replicas. Neurosci Lett. 1984 Jul 27;48(2):171–177. doi: 10.1016/0304-3940(84)90015-6. [DOI] [PubMed] [Google Scholar]
  177. Rosenbluth J., Tao-Cheng J. H., Blakemore W. F. Dependence of axolemmal differentiation on contact with glial cells in chronically demyelinated lesions of cat spinal cord. Brain Res. 1985 Dec 9;358(1-2):287–302. doi: 10.1016/0006-8993(85)90973-4. [DOI] [PubMed] [Google Scholar]
  178. Schauf C. L., Davis F. A. Circulating toxic factors in multiple sclerosis: a perspective. Adv Neurol. 1981;31:267–280. [PubMed] [Google Scholar]
  179. Schauf C. L., Davis F. A. Impulse conduction in multiple sclerosis: a theoretical basis for modification by temperature and pharmacological agents. J Neurol Neurosurg Psychiatry. 1974 Feb;37(2):152–161. doi: 10.1136/jnnp.37.2.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Schauf C. L., Davis F. A., Sack D. A., Reed B. J., Kesler R. L. Neuroelectric blocking factors in human and animal sera evaluated using the isolated frog spinal cord. J Neurol Neurosurg Psychiatry. 1976 Jul;39(7):680–685. doi: 10.1136/jnnp.39.7.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Schauf C. L., Davis F. A. The occurrence, specificity, and role of neuroelectric blocking factors in multiple sclerosis. Neurology. 1978 Sep;28(9 Pt 2):34–39. doi: 10.1212/wnl.28.9_part_2.34. [DOI] [PubMed] [Google Scholar]
  182. Schauf C. L., Schauf V., Davis F. A., Mizen M. R. Complement-dependent serum: neuroelectric blocking activity in multiple sclerosis. Neurology. 1978 May;28(5):426–430. doi: 10.1212/wnl.28.5.426. [DOI] [PubMed] [Google Scholar]
  183. Schwarz J. R., Grigat G. Phenytoin and carbamazepine: potential- and frequency-dependent block of Na currents in mammalian myelinated nerve fibers. Epilepsia. 1989 May-Jun;30(3):286–294. doi: 10.1111/j.1528-1157.1989.tb05300.x. [DOI] [PubMed] [Google Scholar]
  184. Schwid S. R., Petrie M. D., McDermott M. P., Tierney D. S., Mason D. H., Goodman A. D. Quantitative assessment of sustained-release 4-aminopyridine for symptomatic treatment of multiple sclerosis. Neurology. 1997 Apr;48(4):817–821. doi: 10.1212/wnl.48.4.817. [DOI] [PubMed] [Google Scholar]
  185. Sclabassi R. J., Namerow N. S., Enns N. F. Somatosensory response to stimulus trains in patients with multiple sclerosis. Electroencephalogr Clin Neurophysiol. 1974 Jul;37(1):23–33. doi: 10.1016/0013-4694(74)90242-9. [DOI] [PubMed] [Google Scholar]
  186. Sears T. A., Bostock H. Conduction failure in demyelination: is it inevitable? Adv Neurol. 1981;31:357–375. [PubMed] [Google Scholar]
  187. Sears T. A., Bostock H., Sheratt M. The pathophysiology of demyelination and its implications for the symptomatic treatment of multiple sclerosis. Neurology. 1978 Sep;28(9 Pt 2):21–26. doi: 10.1212/wnl.28.9_part_2.21. [DOI] [PubMed] [Google Scholar]
  188. Seil F. J., Leiman A. L., Kelly J. M., 3rd Neuroelectric blocking factors in multiple sclerosis and normal human sera. Arch Neurol. 1976 Jun;33(6):418–422. doi: 10.1001/archneur.1976.00500060024006. [DOI] [PubMed] [Google Scholar]
  189. Seil F. J., Smith M. E., Leiman A. L., Kelly J. M., 3rd Myelination inhibiting and neuroelectric blocking factors in experimental allergic encephalomyelitis. Science. 1975 Mar 14;187(4180):951–953. doi: 10.1126/science.49925. [DOI] [PubMed] [Google Scholar]
  190. Selhorst J. B., Saul R. F. Uhthoff and his symptom. J Neuroophthalmol. 1995 Jun;15(2):63–69. [PubMed] [Google Scholar]
  191. Sherratt R. M., Bostock H., Sears T. A. Effects of 4-aminopyridine on normal and demyelinated mammalian nerve fibres. Nature. 1980 Feb 7;283(5747):570–572. doi: 10.1038/283570a0. [DOI] [PubMed] [Google Scholar]
  192. Shibasaki H., McDonald W. I., Kuroiwa Y. Racial modification of clinical picture of multiple sclerosis: comparison between British and Japanese patients. J Neurol Sci. 1981 Feb;49(2):253–271. doi: 10.1016/0022-510x(81)90083-6. [DOI] [PubMed] [Google Scholar]
  193. Shrager P. Axonal coding of action potentials in demyelinated nerve fibers. Brain Res. 1993 Aug 13;619(1-2):278–290. doi: 10.1016/0006-8993(93)91622-y. [DOI] [PubMed] [Google Scholar]
  194. Shrager P., Custer A. W., Kazarinova K., Rasband M. N., Mattson D. Nerve conduction block by nitric oxide that is mediated by the axonal environment. J Neurophysiol. 1998 Feb;79(2):529–536. doi: 10.1152/jn.1998.79.2.529. [DOI] [PubMed] [Google Scholar]
  195. Shrager P., Rubinstein C. T. Optical measurement of conduction in single demyelinated axons. J Gen Physiol. 1990 May;95(5):867–889. doi: 10.1085/jgp.95.5.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Silver N. C., Good C. D., Barker G. J., MacManus D. G., Thompson A. J., Moseley I. F., McDonald W. I., Miller D. H. Sensitivity of contrast enhanced MRI in multiple sclerosis. Effects of gadolinium dose, magnetization transfer contrast and delayed imaging. Brain. 1997 Jul;120(Pt 7):1149–1161. doi: 10.1093/brain/120.7.1149. [DOI] [PubMed] [Google Scholar]
  197. Sims T. J., Gilmore S. A., Waxman S. G. Radial glia give rise to perinodal processes. Brain Res. 1991 May 17;549(1):25–35. doi: 10.1016/0006-8993(91)90595-m. [DOI] [PubMed] [Google Scholar]
  198. Small D. G., Matthews W. B., Small M. The cervical somatosensory evoked potential (SEP) in the diagnosis of multiple sclerosis. J Neurol Sci. 1978 Feb;35(2-3):211–224. doi: 10.1016/0022-510x(78)90004-7. [DOI] [PubMed] [Google Scholar]
  199. Smith K. J., Blakemore W. F., McDonald W. I. Central remyelination restores secure conduction. Nature. 1979 Aug 2;280(5721):395–396. doi: 10.1038/280395a0. [DOI] [PubMed] [Google Scholar]
  200. Smith K. J., Blakemore W. F., McDonald W. I. The restoration of conduction by central remyelination. Brain. 1981 Jun;104(2):383–404. doi: 10.1093/brain/104.2.383. [DOI] [PubMed] [Google Scholar]
  201. Smith K. J., Bostock H., Hall S. M. Saltatory conduction precedes remyelination in axons demyelinated with lysophosphatidyl choline. J Neurol Sci. 1982 Apr;54(1):13–31. doi: 10.1016/0022-510x(82)90215-5. [DOI] [PubMed] [Google Scholar]
  202. Smith K. J. Conduction properties of central demyelinated and remyelinated axons, and their relation to symptom production in demyelinating disorders. Eye (Lond) 1994;8(Pt 2):224–237. doi: 10.1038/eye.1994.51. [DOI] [PubMed] [Google Scholar]
  203. Smith K. J., McDonald W. I. Spontaneous and evoked electrical discharges from a central demyelinating lesion. J Neurol Sci. 1982 Jul;55(1):39–47. doi: 10.1016/0022-510x(82)90168-x. [DOI] [PubMed] [Google Scholar]
  204. Smith K. J., McDonald W. I. Spontaneous and mechanically evoked activity due to central demyelinating lesion. Nature. 1980 Jul 10;286(5769):154–155. doi: 10.1038/286154a0. [DOI] [PubMed] [Google Scholar]
  205. Sorkin L. S., Xiao W. H., Wagner R., Myers R. R. Tumour necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neuroscience. 1997 Nov;81(1):255–262. doi: 10.1016/s0306-4522(97)00147-4. [DOI] [PubMed] [Google Scholar]
  206. Stefoski D., Schauf C. L., McLeod B. C., Haywood C. P., Davis F. A. Plasmapheresis decreases neuroelectric blocking activity in multiple sclerosis. Neurology. 1982 Aug;32(8):904–907. doi: 10.1212/wnl.32.8.904. [DOI] [PubMed] [Google Scholar]
  207. Stephanova D. I., Chobanova M. Action potentials and ionic currents through paranodally demyelinated human motor nerve fibres: computer simulations. Biol Cybern. 1997 Apr;76(4):311–314. doi: 10.1007/s004220050342. [DOI] [PubMed] [Google Scholar]
  208. Stewart V. C., Giovannoni G., Land J. M., McDonald W. I., Clark J. B., Heales S. J. Pretreatment of astrocytes with interferon-alpha/beta impairs interferon-gamma induction of nitric oxide synthase. J Neurochem. 1997 Jun;68(6):2547–2551. doi: 10.1046/j.1471-4159.1997.68062547.x. [DOI] [PubMed] [Google Scholar]
  209. Stewart W. A., Hall L. D., Berry K., Paty D. W. Correlation between NMR scan and brain slice data in multiple sclerosis. Lancet. 1984 Aug 18;2(8399):412–412. doi: 10.1016/s0140-6736(84)90584-1. [DOI] [PubMed] [Google Scholar]
  210. Stys P. K., Sontheimer H., Ransom B. R., Waxman S. G. Noninactivating, tetrodotoxin-sensitive Na+ conductance in rat optic nerve axons. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6976–6980. doi: 10.1073/pnas.90.15.6976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. TITCOMBE A. F., WILLISON R. G. Flicker fusion in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1961 Aug;24:260–265. doi: 10.1136/jnnp.24.3.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Tancredi V., D'Arcangelo G., Grassi F., Tarroni P., Palmieri G., Santoni A., Eusebi F. Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci Lett. 1992 Nov 9;146(2):176–178. doi: 10.1016/0304-3940(92)90071-e. [DOI] [PubMed] [Google Scholar]
  213. Targ E. F., Kocsis J. D. 4-Aminopyridine leads to restoration of conduction in demyelinated rat sciatic nerve. Brain Res. 1985 Mar 4;328(2):358–361. doi: 10.1016/0006-8993(85)91049-2. [DOI] [PubMed] [Google Scholar]
  214. Thompson A. J., Kermode A. G., Wicks D., MacManus D. G., Kendall B. E., Kingsley D. P., McDonald W. I. Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol. 1991 Jan;29(1):53–62. doi: 10.1002/ana.410290111. [DOI] [PubMed] [Google Scholar]
  215. Truyen L., van Waesberghe J. H., van Walderveen M. A., van Oosten B. W., Polman C. H., Hommes O. R., Adèr H. J., Barkhof F. Accumulation of hypointense lesions ("black holes") on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology. 1996 Dec;47(6):1469–1476. doi: 10.1212/wnl.47.6.1469. [DOI] [PubMed] [Google Scholar]
  216. Utzschneider D. A., Archer D. R., Kocsis J. D., Waxman S. G., Duncan I. D. Transplantation of glial cells enhances action potential conduction of amyelinated spinal cord axons in the myelin-deficient rat. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):53–57. doi: 10.1073/pnas.91.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Waxman S. G., Brill M. H. Conduction through demyelinated plaques in multiple sclerosis: computer simulations of facilitation by short internodes. J Neurol Neurosurg Psychiatry. 1978 May;41(5):408–416. doi: 10.1136/jnnp.41.5.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Waxman S. G. Clinicopathological correlations in multiple sclerosis and related diseases. Adv Neurol. 1981;31:169–182. [PubMed] [Google Scholar]
  219. Waxman S. G. Demyelination in spinal cord injury. J Neurol Sci. 1989 Jun;91(1-2):1–14. doi: 10.1016/0022-510x(89)90072-5. [DOI] [PubMed] [Google Scholar]
  220. Waxman S. G., Foster R. E. Ionic channel distribution and heterogeneity of the axon membrane in myelinated fibers. Brain Res. 1980 Oct;203(2):205–234. doi: 10.1016/0165-0173(80)90008-9. [DOI] [PubMed] [Google Scholar]
  221. Waxman S. G., Geschwind N. Major morbidity related to hyperthermia in multiple sclerosis. Ann Neurol. 1983 Mar;13(3):348–348. doi: 10.1002/ana.410130331. [DOI] [PubMed] [Google Scholar]
  222. Waxman S. G., Ritchie J. M. Molecular dissection of the myelinated axon. Ann Neurol. 1993 Feb;33(2):121–136. doi: 10.1002/ana.410330202. [DOI] [PubMed] [Google Scholar]
  223. Waxman S. G. Sodium channel blockade by antibodies: a new mechanism of neurological disease? Ann Neurol. 1995 Apr;37(4):421–423. doi: 10.1002/ana.410370403. [DOI] [PubMed] [Google Scholar]
  224. Waxman S. G., Utzschneider D. A., Kocsis J. D. Enhancement of action potential conduction following demyelination: experimental approaches to restoration of function in multiple sclerosis and spinal cord injury. Prog Brain Res. 1994;100:233–243. doi: 10.1016/s0079-6123(08)60790-6. [DOI] [PubMed] [Google Scholar]
  225. Weiller C., Ramsay S. C., Wise R. J., Friston K. J., Frackowiak R. S. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol. 1993 Feb;33(2):181–189. doi: 10.1002/ana.410330208. [DOI] [PubMed] [Google Scholar]
  226. Willoughby E. W., Grochowski E., Li D. K., Oger J., Kastrukoff L. F., Paty D. W. Serial magnetic resonance scanning in multiple sclerosis: a second prospective study in relapsing patients. Ann Neurol. 1989 Jan;25(1):43–49. doi: 10.1002/ana.410250107. [DOI] [PubMed] [Google Scholar]
  227. Woolf C. J., Allchorne A., Safieh-Garabedian B., Poole S. Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br J Pharmacol. 1997 Jun;121(3):417–424. doi: 10.1038/sj.bjp.0701148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Wu J. V., Rubinstein C. T., Shrager P. Single channel characterization of multiple types of potassium channels in demyelinated Xenopus axons. J Neurosci. 1993 Dec;13(12):5153–5163. doi: 10.1523/JNEUROSCI.13-12-05153.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Wu J. V., Shrager P. Resolving three types of chloride channels in demyelinated Xenopus axons. J Neurosci Res. 1994 Aug 15;38(6):613–620. doi: 10.1002/jnr.490380603. [DOI] [PubMed] [Google Scholar]
  230. Yamashita T., Ando Y., Obayashi K., Uchino M., Ando M. Changes in nitrite and nitrate (NO2-/NO3-) levels in cerebrospinal fluid of patients with multiple sclerosis. J Neurol Sci. 1997 Dec 9;153(1):32–34. doi: 10.1016/s0022-510x(97)00183-4. [DOI] [PubMed] [Google Scholar]
  231. Youl B. D., Turano G., Miller D. H., Towell A. D., MacManus D. G., Moore S. G., Jones S. J., Barrett G., Kendall B. E., Moseley I. F. The pathophysiology of acute optic neuritis. An association of gadolinium leakage with clinical and electrophysiological deficits. Brain. 1991 Dec;114(Pt 6):2437–2450. doi: 10.1093/brain/114.6.2437. [DOI] [PubMed] [Google Scholar]
  232. Young W., Rosenbluth J., Wojak J. C., Sakatani K., Kim H. Extracellular potassium activity and axonal conduction in spinal cord of the myelin-deficient mutant rat. Exp Neurol. 1989 Oct;106(1):41–51. doi: 10.1016/0014-4886(89)90142-8. [DOI] [PubMed] [Google Scholar]
  233. Yu B., Shinnick-Gallagher P. Interleukin-1 beta inhibits synaptic transmission and induces membrane hyperpolarization in amygdala neurons. J Pharmacol Exp Ther. 1994 Nov;271(2):590–600. [PubMed] [Google Scholar]
  234. van Walderveen M. A., Kamphorst W., Scheltens P., van Waesberghe J. H., Ravid R., Valk J., Polman C. H., Barkhof F. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology. 1998 May;50(5):1282–1288. doi: 10.1212/wnl.50.5.1282. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES