Abstract
The involvement of excited and highly reactive intermediates in oxygenic photosynthesis inevitably results in the generation of reactive oxygen species. To protect the photosynthetic apparatus from oxidative damage, xanthophyll pigments are involved in the quenching of excited chlorophyll and reactive oxygen species, namely 1Chl*, 3Chl*, and 1O2*. Quenching of 1Chl* results in harmless dissipation of excitation energy as heat and is measured as non-photochemical quenching (NPQ) of chlorophyll fluorescence. The multiple roles of xanthophylls in photoprotection are being addressed by characterizing mutants of Chlarnydomonas reinhardtii and Arabidopsis thaliana. Analysis of Arabidopsis mutants that are defective in 1Chl* quenching has shown that, in addition to specific xanthophylls, the psbS gene is necessary for NPQ. Double mutants of Chlamydomonas and Arabidopsis that are deficient in zeaxanthin, lutein and NPQ undergo photo-oxidative bleaching in high light. Extragenic suppressors of the Chlamydomonas npq1 lor1 double mutant identify new mutations that restore varying levels of zeaxanthin accumulation and allow survival in high light.
Full Text
The Full Text of this article is available as a PDF (305.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson I. C., Robertson D. S. Role of Carotenoids in Protecting Chlorophyll From Photodestruction. Plant Physiol. 1960 Jul;35(4):531–534. doi: 10.1104/pp.35.4.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aro E. M., Virgin I., Andersson B. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta. 1993 Jul 5;1143(2):113–134. doi: 10.1016/0005-2728(93)90134-2. [DOI] [PubMed] [Google Scholar]
- Barber J., Kühlbrandt W. Photosystem II. Curr Opin Struct Biol. 1999 Aug;9(4):469–475. doi: 10.1016/S0959-440X(99)80066-9. [DOI] [PubMed] [Google Scholar]
- Bassi R., Pineau B., Dainese P., Marquardt J. Carotenoid-binding proteins of photosystem II. Eur J Biochem. 1993 Mar 1;212(2):297–303. doi: 10.1111/j.1432-1033.1993.tb17662.x. [DOI] [PubMed] [Google Scholar]
- Bugos R. C., Yamamoto H. Y. Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6320–6325. doi: 10.1073/pnas.93.13.6320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demmig B., Winter K., Krüger A., Czygan F. C. Photoinhibition and zeaxanthin formation in intact leaves : a possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol. 1987 Jun;84(2):218–224. doi: 10.1104/pp.84.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edge R., McGarvey D. J., Truscott T. G. The carotenoids as anti-oxidants--a review. J Photochem Photobiol B. 1997 Dec;41(3):189–200. doi: 10.1016/s1011-1344(97)00092-4. [DOI] [PubMed] [Google Scholar]
- Farber A., Young A. J., Ruban A. V., Horton P., Jahns P. Dynamics of Xanthophyll-Cycle Activity in Different Antenna Subcomplexes in the Photosynthetic Membranes of Higher Plants (The Relationship between Zeaxanthin Conversion and Nonphotochemical Fluorescence Quenching). Plant Physiol. 1997 Dec;115(4):1609–1618. doi: 10.1104/pp.115.4.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank H. A., Bautista J. A., Josue J. S., Young A. J. Mechanism of nonphotochemical quenching in green plants: energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry. 2000 Mar 21;39(11):2831–2837. doi: 10.1021/bi9924664. [DOI] [PubMed] [Google Scholar]
- Frank H. A., Cogdell R. J. Carotenoids in photosynthesis. Photochem Photobiol. 1996 Mar;63(3):257–264. doi: 10.1111/j.1751-1097.1996.tb03022.x. [DOI] [PubMed] [Google Scholar]
- Funk C., Schröder W. P., Napiwotzki A., Tjus S. E., Renger G., Andersson B. The PSII-S protein of higher plants: a new type of pigment-binding protein. Biochemistry. 1995 Sep 5;34(35):11133–11141. doi: 10.1021/bi00035a019. [DOI] [PubMed] [Google Scholar]
- GRIFFITHS M., SISTROM W. R., COHENBAZIRE G., STANIER R. Y., CALVIN M. Function of carotenoids in photosynthesis. Nature. 1955 Dec 24;176(4495):1211–1215. doi: 10.1038/1761211a0. [DOI] [PubMed] [Google Scholar]
- Gounaris K., Chapman D. J., Booth P., Crystall B., Giorgi L. B., Klug D. R., Porter G., Barber J. Comparison of the D1/D2/cytochrome b559 reaction centre complex of photosystem two isolated by two different methods. FEBS Lett. 1990 Jun 4;265(1-2):88–92. doi: 10.1016/0014-5793(90)80890-u. [DOI] [PubMed] [Google Scholar]
- Havaux M., Niyogi K. K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8762–8767. doi: 10.1073/pnas.96.15.8762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hideg E., Kálai T., Hideg K., Vass I. Photoinhibition of photosynthesis in vivo results in singlet oxygen production detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry. 1998 Aug 18;37(33):11405–11411. doi: 10.1021/bi972890+. [DOI] [PubMed] [Google Scholar]
- Horton P., Ruban A. V., Walters R. G. REGULATION OF LIGHT HARVESTING IN GREEN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):655–684. doi: 10.1146/annurev.arplant.47.1.655. [DOI] [PubMed] [Google Scholar]
- Hurry V., Anderson J. M., Chow W. S., Osmond C. B. Accumulation of Zeaxanthin in Abscisic Acid-Deficient Mutants of Arabidopsis Does Not Affect Chlorophyll Fluorescence Quenching or Sensitivity to Photoinhibition in Vivo. Plant Physiol. 1997 Feb;113(2):639–648. doi: 10.1104/pp.113.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joyard J, Teyssier E, Miege C, Berny-Seigneurin D, Marechal E, Block MA, Dorne AJ, Rolland N, Ajlani G, Douce R. The biochemical machinery of plastid envelope membranes . Plant Physiol. 1998 Nov;118(3):715–723. doi: 10.1104/pp.118.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kühlbrandt W., Wang D. N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994 Feb 17;367(6464):614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
- Lee A. I., Thornber J. P. Analysis of the pigment stoichiometry of pigment-protein complexes from barley (Hordeum vulgare). The xanthophyll cycle intermediates occur mainly in the light-harvesting complexes of photosystem I and photosystem II. Plant Physiol. 1995 Feb;107(2):565–574. doi: 10.1104/pp.107.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marin E., Nussaume L., Quesada A., Gonneau M., Sotta B., Hugueney P., Frey A., Marion-Poll A. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J. 1996 May 15;15(10):2331–2342. [PMC free article] [PubMed] [Google Scholar]
- Niyogi K. K., Bjorkman O., Grossman A. R. Chlamydomonas Xanthophyll Cycle Mutants Identified by Video Imaging of Chlorophyll Fluorescence Quenching. Plant Cell. 1997 Aug;9(8):1369–1380. doi: 10.1105/tpc.9.8.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niyogi K. K., Björkman O., Grossman A. R. The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):14162–14167. doi: 10.1073/pnas.94.25.14162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niyogi K. K., Grossman A. R., Björkman O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell. 1998 Jul;10(7):1121–1134. doi: 10.1105/tpc.10.7.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niyogi Krishna K. PHOTOPROTECTION REVISITED: Genetic and Molecular Approaches. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50(NaN):333–359. doi: 10.1146/annurev.arplant.50.1.333. [DOI] [PubMed] [Google Scholar]
- Palozza P., Krinsky N. I. beta-Carotene and alpha-tocopherol are synergistic antioxidants. Arch Biochem Biophys. 1992 Aug 15;297(1):184–187. doi: 10.1016/0003-9861(92)90658-j. [DOI] [PubMed] [Google Scholar]
- Peterman E. J., Dukker F. M., van Grondelle R., van Amerongen H. Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants. Biophys J. 1995 Dec;69(6):2670–2678. doi: 10.1016/S0006-3495(95)80138-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson R. B., Havir E. A. A nonphotochemical-quenching-deficient mutant of Arabidopsis thaliana possessing normal pigment composition and xanthophyll-cycle activity. Planta. 2000 Jan;210(2):205–214. doi: 10.1007/PL00008127. [DOI] [PubMed] [Google Scholar]
- Pogson B. J., Niyogi K. K., Björkman O., DellaPenna D. Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13324–13329. doi: 10.1073/pnas.95.22.13324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polívka T., Herek J. L., Zigmantas D., Akerlund H. E., Sundström V. Direct observation of the (forbidden) S1 state in carotenoids. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4914–4917. doi: 10.1073/pnas.96.9.4914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rock C. D., Zeevaart J. A. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7496–7499. doi: 10.1073/pnas.88.17.7496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruban A. V., Young A. J., Pascal A. A., Horton P. The Effects of Illumination on the Xanthophyll Composition of the Photosystem II Light-Harvesting Complexes of Spinach Thylakoid Membranes. Plant Physiol. 1994 Jan;104(1):227–234. doi: 10.1104/pp.104.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SAGER R., ZALOKAR M. Pigments and photosynthesis in a carotenoid-deficient mutant of Chlamydomonas. Nature. 1958 Jul 12;182(4628):98–100. doi: 10.1038/182098a0. [DOI] [PubMed] [Google Scholar]
- Schubert W. D., Klukas O., Krauss N., Saenger W., Fromme P., Witt H. T. Photosystem I of Synechococcus elongatus at 4 A resolution: comprehensive structure analysis. J Mol Biol. 1997 Oct 10;272(5):741–769. doi: 10.1006/jmbi.1997.1269. [DOI] [PubMed] [Google Scholar]
- Shikanai T., Munekage Y., Shimizu K., Endo T., Hashimoto T. Identification and characterization of Arabidopsis mutants with reduced quenching of chlorophyll fluorescence. Plant Cell Physiol. 1999 Nov;40(11):1134–1142. doi: 10.1093/oxfordjournals.pcp.a029498. [DOI] [PubMed] [Google Scholar]
- Snodderly D. M. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr. 1995 Dec;62(6 Suppl):1448S–1461S. doi: 10.1093/ajcn/62.6.1448S. [DOI] [PubMed] [Google Scholar]
- Sujak A., Gabrielska J., Grudziński W., Borc R., Mazurek P., Gruszecki W. I. Lutein and zeaxanthin as protectors of lipid membranes against oxidative damage: the structural aspects. Arch Biochem Biophys. 1999 Nov 15;371(2):301–307. doi: 10.1006/abbi.1999.1437. [DOI] [PubMed] [Google Scholar]
- Swayze V. W., 2nd, Andersen A., Arndt S., Rajarethinam R., Fleming F., Sato Y., Andreasen N. C. Reversibility of brain tissue loss in anorexia nervosa assessed with a computerized Talairach 3-D proportional grid. Psychol Med. 1996 Mar;26(2):381–390. doi: 10.1017/s0033291700034772. [DOI] [PubMed] [Google Scholar]
- Tardy F., Havaux M. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana. J Photochem Photobiol B. 1996 Jun;34(1):87–94. doi: 10.1016/1011-1344(95)07272-1. [DOI] [PubMed] [Google Scholar]