Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Jun 29;357(1422):777–789. doi: 10.1098/rstb.2002.1090

Cytoskeleton and plant organogenesis.

Benedikt Kost 1, Yi-Qun Bao 1, Nam-Hai Chua 1
PMCID: PMC1692989  PMID: 12079673

Abstract

The functions of microtubules and actin filaments during various processes that are essential for the growth, reproduction and survival of single plant cells have been well characterized. A large number of plant structural cytoskeletal or cytoskeleton-associated proteins, as well as genes encoding such proteins, have been identified. Although many of these genes and proteins have been partially characterized with respect to their functions, a coherent picture of how they interact to execute cytoskeletal functions in plant cells has yet to emerge. Cytoskeleton-controlled cellular processes are expected to play crucial roles during plant cell differentiation and organogenesis, but what exactly these roles are has only been investigated in a limited number of studies in the whole plant context. The intent of this review is to discuss the results of these studies in the light of what is known about the cellular functions of the plant cytoskeleton, and about the proteins and genes that are required for them. Directions are outlined for future work to advance our understanding of how the cytoskeleton contributes to plant organogenesis and development.

Full Text

The Full Text of this article is available as a PDF (155.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aizawa H., Sutoh K., Yahara I. Overexpression of cofilin stimulates bundling of actin filaments, membrane ruffling, and cell movement in Dictyostelium. J Cell Biol. 1996 Feb;132(3):335–344. doi: 10.1083/jcb.132.3.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amann K. J., Pollard T. D. Cellular regulation of actin network assembly. Curr Biol. 2000 Oct 19;10(20):R728–R730. doi: 10.1016/s0960-9822(00)00751-x. [DOI] [PubMed] [Google Scholar]
  3. Andersen S. S. Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends Cell Biol. 2000 Jul;10(7):261–267. doi: 10.1016/s0962-8924(00)01786-4. [DOI] [PubMed] [Google Scholar]
  4. Arber S., Barbayannis F. A., Hanser H., Schneider C., Stanyon C. A., Bernard O., Caroni P. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature. 1998 Jun 25;393(6687):805–809. doi: 10.1038/31729. [DOI] [PubMed] [Google Scholar]
  5. Ayscough K. R. In vivo functions of actin-binding proteins. Curr Opin Cell Biol. 1998 Feb;10(1):102–111. doi: 10.1016/s0955-0674(98)80092-6. [DOI] [PubMed] [Google Scholar]
  6. Balasubramanian M. K., Hirani B. R., Burke J. D., Gould K. L. The Schizosaccharomyces pombe cdc3+ gene encodes a profilin essential for cytokinesis. J Cell Biol. 1994 Jun;125(6):1289–1301. doi: 10.1083/jcb.125.6.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baluska F., Jasik J., Edelmann H. G., Salajová T., Volkmann D. Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent. Dev Biol. 2001 Mar 1;231(1):113–124. doi: 10.1006/dbio.2000.0115. [DOI] [PubMed] [Google Scholar]
  8. Bao Y., Kost B., Chua N. H. Reduced expression of alpha-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J. 2001 Oct;28(2):145–157. doi: 10.1046/j.1365-313x.2001.01142.x. [DOI] [PubMed] [Google Scholar]
  9. Barroso C., Chan J., Allan V., Doonan J., Hussey P., Lloyd C. Two kinesin-related proteins associated with the cold-stable cytoskeleton of carrot cells: characterization of a novel kinesin, DcKRP120-2. Plant J. 2000 Dec;24(6):859–868. doi: 10.1046/j.1365-313x.2000.00937.x. [DOI] [PubMed] [Google Scholar]
  10. Baskin T. I., Wilson J. E., Cork A., Williamson R. E. Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol. Plant Cell Physiol. 1994 Sep;35(6):935–942. [PubMed] [Google Scholar]
  11. Bichet A., Desnos T., Turner S., Grandjean O., Höfte H. BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J. 2001 Jan;25(2):137–148. doi: 10.1046/j.1365-313x.2001.00946.x. [DOI] [PubMed] [Google Scholar]
  12. Blancaflor E. B., Hasenstein K. H. Time course and auxin sensitivity of cortical microtubule reorientation in maize roots. Protoplasma. 1995;185:72–82. doi: 10.1007/BF01272755. [DOI] [PubMed] [Google Scholar]
  13. Bouchez D., Höfte H. Functional genomics in plants. Plant Physiol. 1998 Nov;118(3):725–732. doi: 10.1104/pp.118.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Canaday J., Stoppin-Mellet V., Mutterer J., Lambert A. M., Schmit A. C. Higher plant cells: gamma-tubulin and microtubule nucleation in the absence of centrosomes. Microsc Res Tech. 2000 Jun 1;49(5):487–495. doi: 10.1002/(SICI)1097-0029(20000601)49:5<487::AID-JEMT11>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  15. Cao L. G., Babcock G. G., Rubenstein P. A., Wang Y. L. Effects of profilin and profilactin on actin structure and function in living cells. J Cell Biol. 1992 Jun;117(5):1023–1029. doi: 10.1083/jcb.117.5.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chen H., Bernstein B. W., Bamburg J. R. Regulating actin-filament dynamics in vivo. Trends Biochem Sci. 2000 Jan;25(1):19–23. doi: 10.1016/s0968-0004(99)01511-x. [DOI] [PubMed] [Google Scholar]
  17. Christensen H. E., Ramachandran S., Tan C. T., Surana U., Dong C. H., Chua N. H. Arabidopsis profilins are functionally similar to yeast profilins: identification of a vascular bundle-specific profilin and a pollen-specific profilin. Plant J. 1996 Aug;10(2):269–279. doi: 10.1046/j.1365-313x.1996.10020269.x. [DOI] [PubMed] [Google Scholar]
  18. Cleary A. L., Smith L. G. The Tangled1 gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development. Plant Cell. 1998 Nov;10(11):1875–1888. doi: 10.1105/tpc.10.11.1875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Cooper J. A., Schafer D. A. Control of actin assembly and disassembly at filament ends. Curr Opin Cell Biol. 2000 Feb;12(1):97–103. doi: 10.1016/s0955-0674(99)00062-9. [DOI] [PubMed] [Google Scholar]
  21. Cyr R. J. Microtubules in plant morphogenesis: role of the cortical array. Annu Rev Cell Biol. 1994;10:153–180. doi: 10.1146/annurev.cb.10.110194.001101. [DOI] [PubMed] [Google Scholar]
  22. Cyr R. J., Palevitz B. A. Organization of cortical microtubules in plant cells. Curr Opin Cell Biol. 1995 Feb;7(1):65–71. doi: 10.1016/0955-0674(95)80046-8. [DOI] [PubMed] [Google Scholar]
  23. Dong C. H., Kost B., Xia G., Chua N. H. Molecular identification and characterization of the Arabidopsis AtADF1, AtADFS and AtADF6 genes. Plant Mol Biol. 2001 Mar;45(5):517–527. doi: 10.1023/a:1010687911374. [DOI] [PubMed] [Google Scholar]
  24. Doussau F., Augustine G. J. The actin cytoskeleton and neurotransmitter release: an overview. Biochimie. 2000 Apr;82(4):353–363. doi: 10.1016/s0300-9084(00)00217-0. [DOI] [PubMed] [Google Scholar]
  25. Eckardt N. A. New insights into auxin biosynthesis. Plant Cell. 2001 Jan;13(1):1–3. doi: 10.1105/tpc.13.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Emons A. M., Mulder B. M. How the deposition of cellulose microfibrils builds cell wall architecture. Trends Plant Sci. 2000 Jan;5(1):35–40. doi: 10.1016/s1360-1385(99)01507-1. [DOI] [PubMed] [Google Scholar]
  27. Endlé M. C., Stoppin V., Lambert A. M., Schmit A. C. The growing cell plate of higher plants is a site of both actin assembly and vinculin-like antigen recruitment. Eur J Cell Biol. 1998 Sep;77(1):10–18. doi: 10.1016/S0171-9335(98)80097-6. [DOI] [PubMed] [Google Scholar]
  28. Finkel T., Theriot J. A., Dise K. R., Tomaselli G. F., Goldschmidt-Clermont P. J. Dynamic actin structures stabilized by profilin. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1510–1514. doi: 10.1073/pnas.91.4.1510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Fischer J. A. Molecular motors and developmental asymmetry. Curr Opin Genet Dev. 2000 Oct;10(5):489–496. doi: 10.1016/s0959-437x(00)00117-9. [DOI] [PubMed] [Google Scholar]
  30. Fischer K., Schopfer P. Physical strain-mediated microtubule reorientation in the epidermis of gravitropically or phototropically stimulated maize coleoptiles. Plant J. 1998 Jul;15(1):119–123. doi: 10.1046/j.1365-313x.1998.00173.x. [DOI] [PubMed] [Google Scholar]
  31. Fowler J. E., Quatrano R. S. Plant cell morphogenesis: plasma membrane interactions with the cytoskeleton and cell wall. Annu Rev Cell Dev Biol. 1997;13:697–743. doi: 10.1146/annurev.cellbio.13.1.697. [DOI] [PubMed] [Google Scholar]
  32. Furutani I., Watanabe Y., Prieto R., Masukawa M., Suzuki K., Naoi K., Thitamadee S., Shikanai T., Hashimoto T. The SPIRAL genes are required for directional control of cell elongation in Aarabidopsis thaliana. Development. 2000 Oct;127(20):4443–4453. doi: 10.1242/dev.127.20.4443. [DOI] [PubMed] [Google Scholar]
  33. Gallagher K., Smith L. G. discordia mutations specifically misorient asymmetric cell divisions during development of the maize leaf epidermis. Development. 1999 Oct;126(20):4623–4633. doi: 10.1242/dev.126.20.4623. [DOI] [PubMed] [Google Scholar]
  34. Gilliland L. U., McKinney E. C., Asmussen M. A., Meagher R. B. Detection of deleterious genotypes in multigenerational studies. I. Disruptions in individual Arabidopsis actin genes. Genetics. 1998 Jun;149(2):717–725. doi: 10.1093/genetics/149.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Goddard R. H., Wick S. M., Silflow C. D., Snustad D. P. Microtubule Components of the Plant Cell Cytoskeleton. Plant Physiol. 1994 Jan;104(1):1–6. doi: 10.1104/pp.104.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Green P. B. Mechanism for Plant Cellular Morphogenesis. Science. 1962 Dec 28;138(3548):1404–1405. doi: 10.1126/science.138.3548.1404. [DOI] [PubMed] [Google Scholar]
  37. Gunsalus K. C., Bonaccorsi S., Williams E., Verni F., Gatti M., Goldberg M. L. Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis. J Cell Biol. 1995 Dec;131(5):1243–1259. doi: 10.1083/jcb.131.5.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Haarer B. K., Lillie S. H., Adams A. E., Magdolen V., Bandlow W., Brown S. S. Purification of profilin from Saccharomyces cerevisiae and analysis of profilin-deficient cells. J Cell Biol. 1990 Jan;110(1):105–114. doi: 10.1083/jcb.110.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Hashimoto Takashi. Molecular genetic analysis of left-right handedness in plants. Philos Trans R Soc Lond B Biol Sci. 2002 Jun 29;357(1422):799–808. doi: 10.1098/rstb.2002.1088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Hepler P. K., Hush J. M. Behavior of Microtubules in Living Plant Cells. Plant Physiol. 1996 Oct;112(2):455–461. doi: 10.1104/pp.112.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Hu S., Brady S. R., Kovar D. R., Staiger C. J., Clark G. B., Roux S. J., Muday G. K. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography. Plant J. 2000 Oct;24(1):127–137. doi: 10.1046/j.1365-313x.2000.00852.x. [DOI] [PubMed] [Google Scholar]
  42. Huang S., McDowell J. M., Weise M. J., Meagher R. B. The Arabidopsis profilin gene family. Evidence for an ancient split between constitutive and pollen-specific profilin genes. Plant Physiol. 1996 May;111(1):115–126. doi: 10.1104/pp.111.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Iida K., Moriyama K., Matsumoto S., Kawasaki H., Nishida E., Yahara I. Isolation of a yeast essential gene, COF1, that encodes a homologue of mammalian cofilin, a low-M(r) actin-binding and depolymerizing protein. Gene. 1993 Feb 14;124(1):115–120. doi: 10.1016/0378-1119(93)90770-4. [DOI] [PubMed] [Google Scholar]
  44. Joshi H. C. Microtubule dynamics in living cells. Curr Opin Cell Biol. 1998 Feb;10(1):35–44. doi: 10.1016/s0955-0674(98)80084-7. [DOI] [PubMed] [Google Scholar]
  45. Kao Y. L., Deavours B. E., Phelps K. K., Walker R. A., Reddy A. S. Bundling of microtubules by motor and tail domains of a kinesin-like calmodulin-binding protein from Arabidopsis: regulation by Ca(2+)/Calmodulin. Biochem Biophys Res Commun. 2000 Jan 7;267(1):201–207. doi: 10.1006/bbrc.1999.1896. [DOI] [PubMed] [Google Scholar]
  46. Klahre U., Chua N. H. The Arabidopsis actin-related protein 2 (AtARP2) promoter directs expression in xylem precursor cells and pollen. Plant Mol Biol. 1999 Sep;41(1):65–73. doi: 10.1023/a:1006247600932. [DOI] [PubMed] [Google Scholar]
  47. Klahre U., Friederich E., Kost B., Louvard D., Chua N. H. Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol. 2000 Jan;122(1):35–48. doi: 10.1104/pp.122.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Koornneef M. Plant development: timing when to flower. Curr Biol. 1997 Oct 1;7(10):R651–R652. doi: 10.1016/s0960-9822(06)00326-5. [DOI] [PubMed] [Google Scholar]
  49. Kopczak S. D., Haas N. A., Hussey P. J., Silflow C. D., Snustad D. P. The small genome of Arabidopsis contains at least six expressed alpha-tubulin genes. Plant Cell. 1992 May;4(5):539–547. doi: 10.1105/tpc.4.5.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Kost B., Lemichez E., Spielhofer P., Hong Y., Tolias K., Carpenter C., Chua N. H. Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol. 1999 Apr 19;145(2):317–330. doi: 10.1083/jcb.145.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Kost B., Mathur J., Chua N. H. Cytoskeleton in plant development. Curr Opin Plant Biol. 1999 Dec;2(6):462–470. doi: 10.1016/s1369-5266(99)00024-2. [DOI] [PubMed] [Google Scholar]
  52. Kost B., Spielhofer P., Chua N. H. A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J. 1998 Nov;16(3):393–401. doi: 10.1046/j.1365-313x.1998.00304.x. [DOI] [PubMed] [Google Scholar]
  53. Kovar D. R., Staiger C. J., Weaver E. A., McCurdy D. W. AtFim1 is an actin filament crosslinking protein from Arabidopsis thaliana. Plant J. 2000 Dec;24(5):625–636. doi: 10.1046/j.1365-313x.2000.00907.x. [DOI] [PubMed] [Google Scholar]
  54. Kropf D. L., Bisgrove S. R., Hable W. E. Cytoskeletal control of polar growth in plant cells. Curr Opin Cell Biol. 1998 Feb;10(1):117–122. doi: 10.1016/s0955-0674(98)80094-x. [DOI] [PubMed] [Google Scholar]
  55. Krysan P. J., Young J. C., Sussman M. R. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell. 1999 Dec;11(12):2283–2290. doi: 10.1105/tpc.11.12.2283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Ledbetter M. C., Porter K. R. A "MICROTUBULE" IN PLANT CELL FINE STRUCTURE. J Cell Biol. 1963 Oct 1;19(1):239–250. doi: 10.1083/jcb.19.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Lee Y. R., Liu B. Identification of a phragmoplast-associated kinesin-related protein in higher plants. Curr Biol. 2000 Jun 29;10(13):797–800. doi: 10.1016/s0960-9822(00)00564-9. [DOI] [PubMed] [Google Scholar]
  58. Lemichez E., Wu Y., Sanchez J. P., Mettouchi A., Mathur J., Chua N. H. Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev. 2001 Jul 15;15(14):1808–1816. doi: 10.1101/gad.900401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Li H., Wu G., Ware D., Davis K. R., Yang Z. Arabidopsis Rho-related GTPases: differential gene expression in pollen and polar localization in fission yeast. Plant Physiol. 1998 Oct;118(2):407–417. doi: 10.1104/pp.118.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Liu B., Joshi H. C., Wilson T. J., Silflow C. D., Palevitz B. A., Snustad D. P. gamma-Tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell. 1994 Feb;6(2):303–314. doi: 10.1105/tpc.6.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Manseau L., Calley J., Phan H. Profilin is required for posterior patterning of the Drosophila oocyte. Development. 1996 Jul;122(7):2109–2116. doi: 10.1242/dev.122.7.2109. [DOI] [PubMed] [Google Scholar]
  62. Marc J, Granger CL, Brincat J, Fisher DD, Kao Th, McCubbin AG, Cyr RJ. A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells . Plant Cell. 1998 Nov;10(11):1927–1940. doi: 10.1105/tpc.10.11.1927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Margolis R. L., Wilson L. Microtubule treadmilling: what goes around comes around. Bioessays. 1998 Oct;20(10):830–836. doi: 10.1002/(SICI)1521-1878(199810)20:10<830::AID-BIES8>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  64. Mathur J., Chua N. H. Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes. Plant Cell. 2000 Apr;12(4):465–477. doi: 10.1105/tpc.12.4.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Mathur J., Spielhofer P., Kost B., Chua N. The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. Development. 1999 Dec;126(24):5559–5568. doi: 10.1242/dev.126.24.5559. [DOI] [PubMed] [Google Scholar]
  66. Mayer U., Herzog U., Berger F., Inzé D., Jürgens G. Mutations in the pilz group genes disrupt the microtubule cytoskeleton and uncouple cell cycle progression from cell division in Arabidopsis embryo and endosperm. Eur J Cell Biol. 1999 Feb;78(2):100–108. doi: 10.1016/S0171-9335(99)80011-9. [DOI] [PubMed] [Google Scholar]
  67. McCurdy D. W., Kim M. Molecular cloning of a novel fimbrin-like cDNA from Arabidopsis thaliana. Plant Mol Biol. 1998 Jan;36(1):23–31. doi: 10.1023/a:1005884112192. [DOI] [PubMed] [Google Scholar]
  68. McDowell J. M., Huang S., McKinney E. C., An Y. Q., Meagher R. B. Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics. 1996 Feb;142(2):587–602. doi: 10.1093/genetics/142.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. McKinney E. C., Kandasamy M. K., Meagher R. B. Small changes in the regulation of one Arabidopsis profilin isovariant, PRF1, alter seedling development. Plant Cell. 2001 May;13(5):1179–1191. doi: 10.1105/tpc.13.5.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. McLean B. G., Hempel F. D., Zambryski P. C. Plant intercellular communication via plasmodesmata. Plant Cell. 1997 Jul;9(7):1043–1054. doi: 10.1105/tpc.9.7.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Meagher R. B., McKinney E. C., Kandasamy M. K. Isovariant dynamics expand and buffer the responses of complex systems: the diverse plant actin gene family. Plant Cell. 1999 Jun;11(6):995–1006. doi: 10.1105/tpc.11.6.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Meagher R. B., McKinney E. C., Vitale A. V. The evolution of new structures: clues from plant cytoskeletal genes. Trends Genet. 1999 Jul;15(7):278–284. doi: 10.1016/s0168-9525(99)01759-x. [DOI] [PubMed] [Google Scholar]
  73. Moon A. L., Janmey P. A., Louie K. A., Drubin D. G. Cofilin is an essential component of the yeast cortical cytoskeleton. J Cell Biol. 1993 Jan;120(2):421–435. doi: 10.1083/jcb.120.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Moscatelli A., Del Casino C., Lozzi L., Cai G., Scali M., Tiezzi A., Cresti M. High molecular weight polypeptides related to dynein heavy chains in Nicotiana tabacum pollen tubes. J Cell Sci. 1995 Mar;108(Pt 3):1117–1125. doi: 10.1242/jcs.108.3.1117. [DOI] [PubMed] [Google Scholar]
  75. Nagaoka R., Kusano K., Abe H., Obinata T. Effects of cofilin on actin filamentous structures in cultured muscle cells. Intracellular regulation of cofilin action. J Cell Sci. 1995 Feb;108(Pt 2):581–593. doi: 10.1242/jcs.108.2.581. [DOI] [PubMed] [Google Scholar]
  76. Oppenheimer D. G., Pollock M. A., Vacik J., Szymanski D. B., Ericson B., Feldmann K., Marks M. D. Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6261–6266. doi: 10.1073/pnas.94.12.6261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Palevitz B. A. Actin in the preprophase band of Allium cepa. J Cell Biol. 1987 Jun;104(6):1515–1519. doi: 10.1083/jcb.104.6.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Pollard T. D., Blanchoin L., Mullins R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct. 2000;29:545–576. doi: 10.1146/annurev.biophys.29.1.545. [DOI] [PubMed] [Google Scholar]
  79. Pruyne D., Bretscher A. Polarization of cell growth in yeast. J Cell Sci. 2000 Feb;113(Pt 4):571–585. doi: 10.1242/jcs.113.4.571. [DOI] [PubMed] [Google Scholar]
  80. Ramachandran S., Christensen H. E., Ishimaru Y., Dong C. H., Chao-Ming W., Cleary A. L., Chua N. H. Profilin plays a role in cell elongation, cell shape maintenance, and flowering in Arabidopsis. Plant Physiol. 2000 Dec;124(4):1637–1647. doi: 10.1104/pp.124.4.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Reddy A. S. Molecular motors and their functions in plants. Int Rev Cytol. 2001;204:97–178. doi: 10.1016/s0074-7696(01)04004-9. [DOI] [PubMed] [Google Scholar]
  82. Schoenenberger C. A., Steinmetz M. O., Stoffler D., Mandinova A., Aebi U. Structure, assembly, and dynamics of actin filaments in situ and in vitro. Microsc Res Tech. 1999 Oct 1;47(1):38–50. doi: 10.1002/(SICI)1097-0029(19991001)47:1<38::AID-JEMT4>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  83. Seagull R. W., Falconer M. M., Weerdenburg C. A. Microfilaments: dynamic arrays in higher plant cells. J Cell Biol. 1987 Apr;104(4):995–1004. doi: 10.1083/jcb.104.4.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Simpson G. G., Gendall A. R., Dean C. When to switch to flowering. Annu Rev Cell Dev Biol. 1999;15:519–550. doi: 10.1146/annurev.cellbio.15.1.519. [DOI] [PubMed] [Google Scholar]
  85. Smertenko A., Saleh N., Igarashi H., Mori H., Hauser-Hahn I., Jiang C. J., Sonobe S., Lloyd C. W., Hussey P. J. A new class of microtubule-associated proteins in plants. Nat Cell Biol. 2000 Oct;2(10):750–753. doi: 10.1038/35036390. [DOI] [PubMed] [Google Scholar]
  86. Smith L. G. Divide and conquer: cytokinesis in plant cells. Curr Opin Plant Biol. 1999 Dec;2(6):447–453. doi: 10.1016/s1369-5266(99)00022-9. [DOI] [PubMed] [Google Scholar]
  87. Smith L. G., Gerttula S. M., Han S., Levy J. Tangled1: a microtubule binding protein required for the spatial control of cytokinesis in maize. J Cell Biol. 2001 Jan 8;152(1):231–236. doi: 10.1083/jcb.152.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Smith N. A., Singh S. P., Wang M. B., Stoutjesdijk P. A., Green A. G., Waterhouse P. M. Total silencing by intron-spliced hairpin RNAs. Nature. 2000 Sep 21;407(6802):319–320. doi: 10.1038/35030305. [DOI] [PubMed] [Google Scholar]
  89. Snustad D. P., Haas N. A., Kopczak S. D., Silflow C. D. The small genome of Arabidopsis contains at least nine expressed beta-tubulin genes. Plant Cell. 1992 May;4(5):549–556. doi: 10.1105/tpc.4.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Staiger C. J., Yuan M., Valenta R., Shaw P. J., Warn R. M., Lloyd C. W. Microinjected profilin affects cytoplasmic streaming in plant cells by rapidly depolymerizing actin microfilaments. Curr Biol. 1994 Mar 1;4(3):215–219. doi: 10.1016/s0960-9822(00)00050-6. [DOI] [PubMed] [Google Scholar]
  91. Sugimoto K., Williamson R. E., Wasteneys G. O. New techniques enable comparative analysis of microtubule orientation, wall texture, and growth rate in intact roots of Arabidopsis. Plant Physiol. 2000 Dec;124(4):1493–1506. doi: 10.1104/pp.124.4.1493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Takei Y., Kondo S., Harada A., Inomata S., Noda T., Hirokawa N. Delayed development of nervous system in mice homozygous for disrupted microtubule-associated protein 1B (MAP1B) gene. J Cell Biol. 1997 Jun 30;137(7):1615–1626. doi: 10.1083/jcb.137.7.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Titu M. A., Gilbert S. P. The diversity of molecular motors: an overview. Cell Mol Life Sci. 1999 Oct 15;56(3-4):181–183. doi: 10.1007/s000180050420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Torres-Ruiz R. A., Jürgens G. Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development. 1994 Oct;120(10):2967–2978. doi: 10.1242/dev.120.10.2967. [DOI] [PubMed] [Google Scholar]
  95. Traas J. A., Doonan J. H., Rawlins D. J., Shaw P. J., Watts J., Lloyd C. W. An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus. J Cell Biol. 1987 Jul;105(1):387–395. doi: 10.1083/jcb.105.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Verheyen E. M., Cooley L. Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development. 1994 Apr;120(4):717–728. doi: 10.1242/dev.120.4.717. [DOI] [PubMed] [Google Scholar]
  97. Vitha S., Baluska F., Mews M., Volkmann D. Immunofluorescence detection of F-actin on low melting point wax sections from plant tissues. J Histochem Cytochem. 1997 Jan;45(1):89–95. doi: 10.1177/002215549704500112. [DOI] [PubMed] [Google Scholar]
  98. Walczak C. E. Microtubule dynamics and tubulin interacting proteins. Curr Opin Cell Biol. 2000 Feb;12(1):52–56. doi: 10.1016/s0955-0674(99)00056-3. [DOI] [PubMed] [Google Scholar]
  99. Wasteneys G. O., Willingale-Theune J., Menzel D. Freeze shattering: a simple and effective method for permeabilizing higher plant cell walls. J Microsc. 1997 Oct;188(Pt 1):51–61. doi: 10.1046/j.1365-2818.1977.2390796.x. [DOI] [PubMed] [Google Scholar]
  100. Wear M. A., Schafer D. A., Cooper J. A. Actin dynamics: assembly and disassembly of actin networks. Curr Biol. 2000 Dec 14;10(24):R891–R895. doi: 10.1016/s0960-9822(00)00845-9. [DOI] [PubMed] [Google Scholar]
  101. Wenzel C. L., Williamson R. E., Wasteneys G. O. Gibberellin-induced changes in growth anisotropy precede gibberellin-dependent changes in cortical microtubule orientation in developing epidermal cells of barley leaves. Kinematic and cytological studies on a gibberellin-responsive dwarf mutant, M489. Plant Physiol. 2000 Oct;124(2):813–822. doi: 10.1104/pp.124.2.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Wernicke W., Jung G. Role of cytoskeleton in cell shaping of developing mesophyll of wheat (Triticum aestivum L.). Eur J Cell Biol. 1992 Feb;57(1):88–94. [PubMed] [Google Scholar]
  103. Wick S. M. Spatial aspects of cytokinesis in plant cells. Curr Opin Cell Biol. 1991 Apr;3(2):253–260. doi: 10.1016/0955-0674(91)90149-s. [DOI] [PubMed] [Google Scholar]
  104. Wick S. Plant microtubules meet their MAPs and mimics. Nat Cell Biol. 2000 Nov;2(11):E204–E206. doi: 10.1038/35041129. [DOI] [PubMed] [Google Scholar]
  105. Winge P., Brembu T., Bones A. M. Cloning and characterization of rac-like cDNAs from Arabidopsis thaliana. Plant Mol Biol. 1997 Nov;35(4):483–495. doi: 10.1023/a:1005804508902. [DOI] [PubMed] [Google Scholar]
  106. Xia G., Ramachandran S., Hong Y., Chan Y. S., Simanis V., Chua N. H. Identification of plant cytoskeletal, cell cycle-related and polarity-related proteins using Schizosaccharomyces pombe. Plant J. 1996 Oct;10(4):761–769. doi: 10.1046/j.1365-313x.1996.10040761.x. [DOI] [PubMed] [Google Scholar]
  107. Yamamoto K., Hamada S., Kashiyama T. Myosins from plants. Cell Mol Life Sci. 1999 Oct 15;56(3-4):227–232. doi: 10.1007/s000180050424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Zhang D., Wadsworth P., Hepler P. K. Microtubule dynamics in living dividing plant cells: confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8820–8824. doi: 10.1073/pnas.87.22.8820. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES