Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Jan 29;358(1429):59–85. doi: 10.1098/rstb.2002.1183

On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells.

William Martin 1, Michael J Russell 1
PMCID: PMC1693102  PMID: 12594918

Abstract

All life is organized as cells. Physical compartmentation from the environment and self-organization of self-contained redox reactions are the most conserved attributes of living things, hence inorganic matter with such attributes would be life's most likely forebear. We propose that life evolved in structured iron monosulphide precipitates in a seepage site hydrothermal mound at a redox, pH and temperature gradient between sulphide-rich hydrothermal fluid and iron(II)-containing waters of the Hadean ocean floor. The naturally arising, three-dimensional compartmentation observed within fossilized seepage-site metal sulphide precipitates indicates that these inorganic compartments were the precursors of cell walls and membranes found in free-living prokaryotes. The known capability of FeS and NiS to catalyse the synthesis of the acetyl-methylsulphide from carbon monoxide and methylsulphide, constituents of hydrothermal fluid, indicates that pre-biotic syntheses occurred at the inner surfaces of these metal-sulphide-walled compartments, which furthermore restrained reacted products from diffusion into the ocean, providing sufficient concentrations of reactants to forge the transition from geochemistry to biochemistry. The chemistry of what is known as the RNA-world could have taken place within these naturally forming, catalyticwalled compartments to give rise to replicating systems. Sufficient concentrations of precursors to support replication would have been synthesized in situ geochemically and biogeochemically, with FeS (and NiS) centres playing the central catalytic role. The universal ancestor we infer was not a free-living cell, but rather was confined to the naturally chemiosmotic, FeS compartments within which the synthesis of its constituents occurred. The first free-living cells are suggested to have been eubacterial and archaebacterial chemoautotrophs that emerged more than 3.8 Gyr ago from their inorganic confines. We propose that the emergence of these prokaryotic lineages from inorganic confines occurred independently, facilitated by the independent origins of membrane-lipid biosynthesis: isoprenoid ether membranes in the archaebacterial and fatty acid ester membranes in the eubacterial lineage. The eukaryotes, all of which are ancestrally heterotrophs and possess eubacterial lipids, are suggested to have arisen ca. 2 Gyr ago through symbiosis involving an autotrophic archaebacterial host and a heterotrophic eubacterial symbiont, the common ancestor of mitochondria and hydrogenosomes. The attributes shared by all prokaryotes are viewed as inheritances from their confined universal ancestor. The attributes that distinguish eubacteria and archaebacteria, yet are uniform within the groups, are viewed as relics of their phase of differentiation after divergence from the non-free-living universal ancestor and before the origin of the free-living chemoautotrophic lifestyle. The attributes shared by eukaryotes with eubacteria and archaebacteria, respectively, are viewed as inheritances via symbiosis. The attributes unique to eukaryotes are viewed as inventions specific to their lineage. The origin of the eukaryotic endomembrane system and nuclear membrane are suggested to be the fortuitous result of the expression of genes for eubacterial membrane lipid synthesis by an archaebacterial genetic apparatus in a compartment that was not fully prepared to accommodate such compounds, resulting in vesicles of eubacterial lipids that accumulated in the cytosol around their site of synthesis. Under these premises, the most ancient divide in the living world is that between eubacteria and archaebacteria, yet the steepest evolutionary grade is that between prokaryotes and eukaryotes.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. F. Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol. 1993 Dec 21;165(4):609–631. doi: 10.1006/jtbi.1993.1210. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amend J. P., Shock E. L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. FEMS Microbiol Rev. 2001 Apr;25(2):175–243. doi: 10.1111/j.1574-6976.2001.tb00576.x. [DOI] [PubMed] [Google Scholar]
  4. Bada Jeffrey L., Lazcano Antonio. Origin of life. Some like it hot, but not the first biomolecules. Science. 2002 Jun 14;296(5575):1982–1983. doi: 10.1126/science.1069487. [DOI] [PubMed] [Google Scholar]
  5. Bartel D. P., Unrau P. J. Constructing an RNA world. Trends Cell Biol. 1999 Dec;9(12):M9–M13. [PubMed] [Google Scholar]
  6. Baughn Anthony D., Malamy Michael H. A mitochondrial-like aconitase in the bacterium Bacteroides fragilis: implications for the evolution of the mitochondrial Krebs cycle. Proc Natl Acad Sci U S A. 2002 Mar 5;99(7):4662–4667. doi: 10.1073/pnas.052710199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baymann Frauke, Lebrun Evelyne, Brugna Myriam, Schoepp-Cothenet Barbara, Giudici-Orticoni Marie-Thérèse, Nitschke Wolfgang. The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes. Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):267–274. doi: 10.1098/rstb.2002.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bell S. D., Jackson S. P. Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. Trends Microbiol. 1998 Jun;6(6):222–228. doi: 10.1016/s0966-842x(98)01281-5. [DOI] [PubMed] [Google Scholar]
  9. Bell S. D., Magill C. P., Jackson S. P. Basal and regulated transcription in Archaea. Biochem Soc Trans. 2001 Aug;29(Pt 4):392–395. doi: 10.1042/bst0290392. [DOI] [PubMed] [Google Scholar]
  10. Berry Stephan. The chemical basis of membrane bioenergetics. J Mol Evol. 2002 May;54(5):595–613. doi: 10.1007/s00239-001-0056-3. [DOI] [PubMed] [Google Scholar]
  11. Boetius A., Ravenschlag K., Schubert C. J., Rickert D., Widdel F., Gieseke A., Amann R., Jørgensen B. B., Witte U., Pfannkuche O. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature. 2000 Oct 5;407(6804):623–626. doi: 10.1038/35036572. [DOI] [PubMed] [Google Scholar]
  12. Brinkmann H., Philippe H. Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol Biol Evol. 1999 Jun;16(6):817–825. doi: 10.1093/oxfordjournals.molbev.a026166. [DOI] [PubMed] [Google Scholar]
  13. Brocks J. J., Logan G. A., Buick R., Summons R. E. Archean molecular fossils and the early rise of eukaryotes. Science. 1999 Aug 13;285(5430):1033–1036. doi: 10.1126/science.285.5430.1033. [DOI] [PubMed] [Google Scholar]
  14. Brown J. R., Doolittle W. F. Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev. 1997 Dec;61(4):456–502. doi: 10.1128/mmbr.61.4.456-502.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Canback B., Andersson S. G. E., Kurland C. G. The global phylogeny of glycolytic enzymes. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6097–6102. doi: 10.1073/pnas.082112499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cavalier-Smith T. Eukaryotes with no mitochondria. 1987 Mar 26-Apr 1Nature. 326(6111):332–333. doi: 10.1038/326332a0. [DOI] [PubMed] [Google Scholar]
  17. Cavalier-Smith T. Intron phylogeny: a new hypothesis. Trends Genet. 1991 May;7(5):145–148. [PubMed] [Google Scholar]
  18. Cavalier-Smith T. Membrane heredity and early chloroplast evolution. Trends Plant Sci. 2000 Apr;5(4):174–182. doi: 10.1016/s1360-1385(00)01598-3. [DOI] [PubMed] [Google Scholar]
  19. Cavalier-Smith T. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol. 2002 Jan;52(Pt 1):7–76. doi: 10.1099/00207713-52-1-7. [DOI] [PubMed] [Google Scholar]
  20. Cavalier-Smith T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol. 2002 Mar;52(Pt 2):297–354. doi: 10.1099/00207713-52-2-297. [DOI] [PubMed] [Google Scholar]
  21. Cech T. R. The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell. 1986 Jan 31;44(2):207–210. doi: 10.1016/0092-8674(86)90751-8. [DOI] [PubMed] [Google Scholar]
  22. Chabrière E., Charon M. H., Volbeda A., Pieulle L., Hatchikian E. C., Fontecilla-Camps J. C. Crystal structures of the key anaerobic enzyme pyruvate:ferredoxin oxidoreductase, free and in complex with pyruvate. Nat Struct Biol. 1999 Feb;6(2):182–190. doi: 10.1038/5870. [DOI] [PubMed] [Google Scholar]
  23. Chien Y. T., Auerbuch V., Brabban A. D., Zinder S. H. Analysis of genes encoding an alternative nitrogenase in the archaeon Methanosarcina barkeri 227. J Bacteriol. 2000 Jun;182(11):3247–3253. doi: 10.1128/jb.182.11.3247-3253.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Chistoserdova L., Vorholt J. A., Thauer R. K., Lidstrom M. E. C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science. 1998 Jul 3;281(5373):99–102. doi: 10.1126/science.281.5373.99. [DOI] [PubMed] [Google Scholar]
  25. Cody G. D., Boctor N. Z., Filley T. R., Hazen R. M., Scott J. H., Sharma A., Yoder H. S., Jr Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science. 2000 Aug 25;289(5483):1337–1340. doi: 10.1126/science.289.5483.1337. [DOI] [PubMed] [Google Scholar]
  26. Deamer D. W. Role of amphiphilic compounds in the evolution of membrane structure on the early earth. Orig Life Evol Biosph. 1986;17(1):3–25. doi: 10.1007/BF01809809. [DOI] [PubMed] [Google Scholar]
  27. Deppenmeier Uwe, Johann Andre, Hartsch Thomas, Merkl Rainer, Schmitz Ruth A., Martinez-Arias Rosa, Henne Anke, Wiezer Arnim, Bäumer Sebastian, Jacobi Carsten. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol. 2002 Jul;4(4):453–461. [PubMed] [Google Scholar]
  28. DiMarco A. A., Bobik T. A., Wolfe R. S. Unusual coenzymes of methanogenesis. Annu Rev Biochem. 1990;59:355–394. doi: 10.1146/annurev.bi.59.070190.002035. [DOI] [PubMed] [Google Scholar]
  29. Dickerson R. E. Evolution and gene transfer in purple photosynthetic bacteria. Nature. 1980 Jan 10;283(5743):210–212. doi: 10.1038/283210a0. [DOI] [PubMed] [Google Scholar]
  30. Dismukes G. C., Klimov V. V., Baranov S. V., Kozlov Y. N., DasGupta J., Tyryshkin A. The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2170–2175. doi: 10.1073/pnas.061514798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Doeller J. E., Grieshaber M. K., Kraus D. W. Chemolithoheterotrophy in a metazoan tissue: thiosulfate production matches ATP demand in ciliated mussel gills. J Exp Biol. 2001 Nov;204(Pt 21):3755–3764. doi: 10.1242/jeb.204.21.3755. [DOI] [PubMed] [Google Scholar]
  32. Doolittle W. F. A paradigm gets shifty. Nature. 1998 Mar 5;392(6671):15–16. doi: 10.1038/32033. [DOI] [PubMed] [Google Scholar]
  33. Doolittle W. F. Phylogenetic classification and the universal tree. Science. 1999 Jun 25;284(5423):2124–2129. doi: 10.1126/science.284.5423.2124. [DOI] [PubMed] [Google Scholar]
  34. Douglas S. E. Plastid evolution: origins, diversity, trends. Curr Opin Genet Dev. 1998 Dec;8(6):655–661. doi: 10.1016/s0959-437x(98)80033-6. [DOI] [PubMed] [Google Scholar]
  35. Eisen J. A. Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr Opin Genet Dev. 2000 Dec;10(6):606–611. doi: 10.1016/s0959-437x(00)00143-x. [DOI] [PubMed] [Google Scholar]
  36. Erickson H. P. Cytoskeleton. Evolution in bacteria. Nature. 2001 Sep 6;413(6851):30–30. doi: 10.1038/35092655. [DOI] [PubMed] [Google Scholar]
  37. Fahrner R. L., Cascio D., Lake J. A., Slesarev A. An ancestral nuclear protein assembly: crystal structure of the Methanopyrus kandleri histone. Protein Sci. 2001 Oct;10(10):2002–2007. doi: 10.1110/ps.10901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ferris J. P., Hill A. R., Jr, Liu R., Orgel L. E. Synthesis of long prebiotic oligomers on mineral surfaces. Nature. 1996 May 2;381(6577):59–61. doi: 10.1038/381059a0. [DOI] [PubMed] [Google Scholar]
  39. Ferry J. G. CO dehydrogenase. Annu Rev Microbiol. 1995;49:305–333. doi: 10.1146/annurev.mi.49.100195.001513. [DOI] [PubMed] [Google Scholar]
  40. Forterre P., Philippe H. Where is the root of the universal tree of life? Bioessays. 1999 Oct;21(10):871–879. doi: 10.1002/(SICI)1521-1878(199910)21:10<871::AID-BIES10>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  41. Gaffey M. J. The early solar system. Orig Life Evol Biosph. 1997 Jun;27(1-3):185–203. [PubMed] [Google Scholar]
  42. Gogarten J. P., Kibak H., Dittrich P., Taiz L., Bowman E. J., Bowman B. J., Manolson M. F., Poole R. J., Date T., Oshima T. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6661–6665. doi: 10.1073/pnas.86.17.6661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Gray M. W., Burger G., Lang B. F. Mitochondrial evolution. Science. 1999 Mar 5;283(5407):1476–1481. doi: 10.1126/science.283.5407.1476. [DOI] [PubMed] [Google Scholar]
  44. Habenicht A., Hellman U., Cerff R. Non-phosphorylating GAPDH of higher plants is a member of the aldehyde dehydrogenase superfamily with no sequence homology to phosphorylating GAPDH. J Mol Biol. 1994 Mar 18;237(1):165–171. doi: 10.1006/jmbi.1994.1217. [DOI] [PubMed] [Google Scholar]
  45. Hall D. O., Cammack R., Rao K. K. Role for ferredoxins in the origin of life and biological evolution. Nature. 1971 Sep 10;233(5315):136–138. doi: 10.1038/233136a0. [DOI] [PubMed] [Google Scholar]
  46. Han T. M., Runnegar B. Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. Science. 1992 Jul 10;257(5067):232–235. doi: 10.1126/science.1631544. [DOI] [PubMed] [Google Scholar]
  47. Hannaert V., Brinkmann H., Nowitzki U., Lee J. A., Albert M. A., Sensen C. W., Gaasterland T., Müller M., Michels P., Martin W. Enolase from Trypanosoma brucei, from the amitochondriate protist Mastigamoeba balamuthi, and from the chloroplast and cytosol of Euglena gracilis: pieces in the evolutionary puzzle of the eukaryotic glycolytic pathway. Mol Biol Evol. 2000 Jul;17(7):989–1000. doi: 10.1093/oxfordjournals.molbev.a026395. [DOI] [PubMed] [Google Scholar]
  48. Hao Bing, Gong Weimin, Ferguson Tsuneo K., James Carey M., Krzycki Joseph A., Chan Michael K. A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science. 2002 May 24;296(5572):1462–1466. doi: 10.1126/science.1069556. [DOI] [PubMed] [Google Scholar]
  49. Hartman Hyman, Fedorov Alexei. The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci U S A. 2002 Jan 22;99(3):1420–1425. doi: 10.1073/pnas.032658599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Hashimoto T., Sánchez L. B., Shirakura T., Müller M., Hasegawa M. Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6860–6865. doi: 10.1073/pnas.95.12.6860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Hazen R. M., Filley T. R., Goodfriend G. A. Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality. Proc Natl Acad Sci U S A. 2001 May 1;98(10):5487–5490. doi: 10.1073/pnas.101085998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Hedges S. B., Chen H., Kumar S., Wang D. Y., Thompson A. S., Watanabe H. A genomic timescale for the origin of eukaryotes. BMC Evol Biol. 2001 Sep 12;1:4–4. doi: 10.1186/1471-2148-1-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Heinen W., Lauwers A. M. Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Orig Life Evol Biosph. 1996 Apr;26(2):131–150. doi: 10.1007/BF01809852. [DOI] [PubMed] [Google Scholar]
  54. Hennet R. J., Holm N. G., Engel M. H. Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: a perpetual phenomenon? Naturwissenschaften. 1992 Aug;79(8):361–365. doi: 10.1007/BF01140180. [DOI] [PubMed] [Google Scholar]
  55. Henze K., Martin W. How do mitochondrial genes get into the nucleus? Trends Genet. 2001 Jul;17(7):383–387. doi: 10.1016/s0168-9525(01)02312-5. [DOI] [PubMed] [Google Scholar]
  56. Horiike T., Hamada K., Kanaya S., Shinozawa T. Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nat Cell Biol. 2001 Feb;3(2):210–214. doi: 10.1038/35055129. [DOI] [PubMed] [Google Scholar]
  57. Horner David S., Heil Burkhard, Happe Thomas, Embley T. Martin. Iron hydrogenases--ancient enzymes in modern eukaryotes. Trends Biochem Sci. 2002 Mar;27(3):148–153. doi: 10.1016/s0968-0004(01)02053-9. [DOI] [PubMed] [Google Scholar]
  58. Huber C., Wächtershäuser G. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science. 1997 Apr 11;276(5310):245–247. doi: 10.1126/science.276.5310.245. [DOI] [PubMed] [Google Scholar]
  59. Huber C., Wächtershäuser G. Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: implications for the origin of life. Science. 1998 Jul 31;281(5377):670–672. doi: 10.1126/science.281.5377.670. [DOI] [PubMed] [Google Scholar]
  60. Ito S., Fushinobu S., Yoshioka I., Koga S., Matsuzawa H., Wakagi T. Structural basis for the ADP-specificity of a novel glucokinase from a hyperthermophilic archaeon. Structure. 2001 Mar 7;9(3):205–214. doi: 10.1016/s0969-2126(01)00577-9. [DOI] [PubMed] [Google Scholar]
  61. Jain R., Rivera M. C., Lake J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3801–3806. doi: 10.1073/pnas.96.7.3801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Javaux E. J., Knoll A. H., Walter M. R. Morphological and ecological complexity in early eukaryotic ecosystems. Nature. 2001 Jul 5;412(6842):66–69. doi: 10.1038/35083562. [DOI] [PubMed] [Google Scholar]
  63. Jenney F. E., Jr, Verhagen M. F., Cui X., Adams M. W. Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science. 1999 Oct 8;286(5438):306–309. doi: 10.1126/science.286.5438.306. [DOI] [PubMed] [Google Scholar]
  64. John P., Whatley F. R. Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature. 1975 Apr 10;254(5500):495–498. doi: 10.1038/254495a0. [DOI] [PubMed] [Google Scholar]
  65. Kates M. The phytanyl ether-linked polar lipids and isoprenoid neutral lipids of extremely halophilic bacteria. Prog Chem Fats Other Lipids. 1978;15(4):301–342. doi: 10.1016/0079-6832(77)90011-8. [DOI] [PubMed] [Google Scholar]
  66. Katinka M. D., Duprat S., Cornillot E., Méténier G., Thomarat F., Prensier G., Barbe V., Peyretaillade E., Brottier P., Wincker P. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature. 2001 Nov 22;414(6862):450–453. doi: 10.1038/35106579. [DOI] [PubMed] [Google Scholar]
  67. Keeling P. J. Parasites go the full monty. Nature. 2001 Nov 22;414(6862):401–402. doi: 10.1038/35106666. [DOI] [PubMed] [Google Scholar]
  68. Kelley D. S., Karson J. A., Blackman D. K., Früh-Green G. L., Butterfield D. A., Lilley M. D., Olson E. J., Schrenk M. O., Roe K. K., Lebon G. T. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. Nature. 2001 Jul 12;412(6843):145–149. doi: 10.1038/35084000. [DOI] [PubMed] [Google Scholar]
  69. Koch A. L., Schmidt T. M. The first cellular bioenergetic process: primitive generation of a proton-motive force. J Mol Evol. 1991 Oct;33(4):297–304. doi: 10.1007/BF02102860. [DOI] [PubMed] [Google Scholar]
  70. Koga Y., Kyuragi T., Nishihara M., Sone N. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J Mol Evol. 1998 Jan;46(1):54–63. doi: 10.1007/pl00006283. [DOI] [PubMed] [Google Scholar]
  71. Kohlhoff M., Dahm A., Hensel R. Tetrameric triosephosphate isomerase from hyperthermophilic Archaea. FEBS Lett. 1996 Apr 1;383(3):245–250. doi: 10.1016/0014-5793(96)00249-9. [DOI] [PubMed] [Google Scholar]
  72. Kostic Milka, Pochapsky Susan Sondej, Obenauer John, Mo Huaping, Pagani Gina M., Pejchal Robert, Pochapsky Thomas C. Comparison of functional domains in vertebrate-type ferredoxins. Biochemistry. 2002 May 14;41(19):5978–5989. doi: 10.1021/bi0200256. [DOI] [PubMed] [Google Scholar]
  73. Kurland C. G. Something for everyone. Horizontal gene transfer in evolution. EMBO Rep. 2000 Aug;1(2):92–95. doi: 10.1093/embo-reports/kvd042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Lancaster C. R., Kröger A., Auer M., Michel H. Structure of fumarate reductase from Wolinella succinogenes at 2.2 A resolution. Nature. 1999 Nov 25;402(6760):377–385. doi: 10.1038/46483. [DOI] [PubMed] [Google Scholar]
  75. Lang A. S., Beatty J. T. The gene transfer agent of Rhodobacter capsulatus and "constitutive transduction" in prokaryotes. Arch Microbiol. 2001 Apr;175(4):241–249. doi: 10.1007/s002030100260. [DOI] [PubMed] [Google Scholar]
  76. Lang B. F., Gray M. W., Burger G. Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet. 1999;33:351–397. doi: 10.1146/annurev.genet.33.1.351. [DOI] [PubMed] [Google Scholar]
  77. Langer D., Hain J., Thuriaux P., Zillig W. Transcription in archaea: similarity to that in eucarya. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5768–5772. doi: 10.1073/pnas.92.13.5768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Leroux M. R., Fändrich M., Klunker D., Siegers K., Lupas A. N., Brown J. R., Schiebel E., Dobson C. M., Hartl F. U. MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J. 1999 Dec 1;18(23):6730–6743. doi: 10.1093/emboj/18.23.6730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Liaud M. F., Lichtlé C., Apt K., Martin W., Cerff R. Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway. Mol Biol Evol. 2000 Feb;17(2):213–223. doi: 10.1093/oxfordjournals.molbev.a026301. [DOI] [PubMed] [Google Scholar]
  80. Lindahl Paul A. The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel? Biochemistry. 2002 Feb 19;41(7):2097–2105. doi: 10.1021/bi015932+. [DOI] [PubMed] [Google Scholar]
  81. Lindmark D. G., Müller M. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem. 1973 Nov 25;248(22):7724–7728. [PubMed] [Google Scholar]
  82. López-Garćia P., Moreira D. Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci. 1999 Mar;24(3):88–93. doi: 10.1016/s0968-0004(98)01342-5. [DOI] [PubMed] [Google Scholar]
  83. Macedo-Ribeiro S., Martins B. M., Pereira P. J., Buse G., Huber R., Soulimane T. New insights into the thermostability of bacterial ferredoxins: high-resolution crystal structure of the seven-iron ferredoxin from Thermus thermophilus. J Biol Inorg Chem. 2001 Sep;6(7):663–674. doi: 10.1007/s007750100243. [DOI] [PubMed] [Google Scholar]
  84. Martin W., Brinkmann H., Savonna C., Cerff R. Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8692–8696. doi: 10.1073/pnas.90.18.8692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Martin W., Cerff R. Prokaryotic features of a nucleus-encoded enzyme. cDNA sequences for chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases from mustard (Sinapis alba). Eur J Biochem. 1986 Sep 1;159(2):323–331. doi: 10.1111/j.1432-1033.1986.tb09871.x. [DOI] [PubMed] [Google Scholar]
  86. Martin W., Hoffmeister M., Rotte C., Henze K. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem. 2001 Nov;382(11):1521–1539. doi: 10.1515/BC.2001.187. [DOI] [PubMed] [Google Scholar]
  87. Martin W. Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. Bioessays. 1999 Feb;21(2):99–104. doi: 10.1002/(SICI)1521-1878(199902)21:2<99::AID-BIES3>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  88. Martin W., Müller M. The hydrogen hypothesis for the first eukaryote. Nature. 1998 Mar 5;392(6671):37–41. doi: 10.1038/32096. [DOI] [PubMed] [Google Scholar]
  89. Martin W., Schnarrenberger C. The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet. 1997 Jul;32(1):1–18. doi: 10.1007/s002940050241. [DOI] [PubMed] [Google Scholar]
  90. Martin W, Herrmann RG. Gene transfer from organelles to the nucleus: how much, what happens, and Why? . Plant Physiol. 1998 Sep;118(1):9–17. doi: 10.1104/pp.118.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Mayr E. Two empires or three? Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9720–9723. doi: 10.1073/pnas.95.17.9720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Michaelis Walter, Seifert Richard, Nauhaus Katja, Treude Tina, Thiel Volker, Blumenberg Martin, Knittel Katrin, Gieseke Armin, Peterknecht Katharina, Pape Thomas. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science. 2002 Aug 9;297(5583):1013–1015. doi: 10.1126/science.1072502. [DOI] [PubMed] [Google Scholar]
  93. Miller S. L., Bada J. L. Submarine hot springs and the origin of life. Nature. 1988 Aug 18;334(6183):609–611. doi: 10.1038/334609a0. [DOI] [PubMed] [Google Scholar]
  94. Mojzsis S. J., Arrhenius G., McKeegan K. D., Harrison T. M., Nutman A. P., Friend C. R. Evidence for life on Earth before 3,800 million years ago. Nature. 1996 Nov 7;384(6604):55–59. doi: 10.1038/384055a0. [DOI] [PubMed] [Google Scholar]
  95. Moulton V., Gardner P. P., Pointon R. F., Creamer L. K., Jameson G. B., Penny D. RNA folding argues against a hot-start origin of life. J Mol Evol. 2000 Oct;51(4):416–421. doi: 10.1007/s002390010104. [DOI] [PubMed] [Google Scholar]
  96. Muth G. W., Ortoleva-Donnelly L., Strobel S. A. A single adenosine with a neutral pKa in the ribosomal peptidyl transferase center. Science. 2000 Aug 11;289(5481):947–950. doi: 10.1126/science.289.5481.947. [DOI] [PubMed] [Google Scholar]
  97. Müller M. A mitochondrion in Entamoeba histolytica? Parasitol Today. 2000 Sep;16(9):368–369. doi: 10.1016/s0169-4758(00)01732-4. [DOI] [PubMed] [Google Scholar]
  98. Müller M. Energy metabolism of protozoa without mitochondria. Annu Rev Microbiol. 1988;42:465–488. doi: 10.1146/annurev.mi.42.100188.002341. [DOI] [PubMed] [Google Scholar]
  99. Nelson K. E., Robertson M. P., Levy M., Miller S. L. Concentration by evaporation and the prebiotic synthesis of cytosine. Orig Life Evol Biosph. 2001 Jun;31(3):221–229. doi: 10.1023/a:1010652418557. [DOI] [PubMed] [Google Scholar]
  100. Newman M. J., Rood R. T. Implications of Solar Evolution for the Earth's Early Atmosphere. Science. 1977 Dec 9;198(4321):1035–1037. doi: 10.1126/science.198.4321.1035. [DOI] [PubMed] [Google Scholar]
  101. Nisbet E. G., Sleep N. H. The habitat and nature of early life. Nature. 2001 Feb 22;409(6823):1083–1091. doi: 10.1038/35059210. [DOI] [PubMed] [Google Scholar]
  102. ORO J., KIMBALL A. P. Synthesis of purines under possible primitive earth conditions. II. Purine intermediates from hydrogen cyanide. Arch Biochem Biophys. 1962 Feb;96:293–313. doi: 10.1016/0003-9861(62)90412-5. [DOI] [PubMed] [Google Scholar]
  103. Oberholzer T., Albrizio M., Luisi P. L. Polymerase chain reaction in liposomes. Chem Biol. 1995 Oct;2(10):677–682. doi: 10.1016/1074-5521(95)90031-4. [DOI] [PubMed] [Google Scholar]
  104. Ochman H., Lawrence J. G., Groisman E. A. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000 May 18;405(6784):299–304. doi: 10.1038/35012500. [DOI] [PubMed] [Google Scholar]
  105. Omer A. D., Lowe T. M., Russell A. G., Ebhardt H., Eddy S. R., Dennis P. P. Homologs of small nucleolar RNAs in Archaea. Science. 2000 Apr 21;288(5465):517–522. doi: 10.1126/science.288.5465.517. [DOI] [PubMed] [Google Scholar]
  106. Orgel L. E., Crick F. H. Anticipating an RNA world. Some past speculations on the origin of life: where are they today? FASEB J. 1993 Jan;7(1):238–239. doi: 10.1096/fasebj.7.1.7678564. [DOI] [PubMed] [Google Scholar]
  107. doi: 10.1098/rspb.1999.0792. [DOI] [PMC free article] [Google Scholar]
  108. Penny D., Poole A. The nature of the last universal common ancestor. Curr Opin Genet Dev. 1999 Dec;9(6):672–677. doi: 10.1016/s0959-437x(99)00020-9. [DOI] [PubMed] [Google Scholar]
  109. Peters J. W. Structure and mechanism of iron-only hydrogenases. Curr Opin Struct Biol. 1999 Dec;9(6):670–676. doi: 10.1016/s0959-440x(99)00028-7. [DOI] [PubMed] [Google Scholar]
  110. Pfanner Nikolaus, Truscott Kaye N. Powering mitochondrial protein import. Nat Struct Biol. 2002 Apr;9(4):234–236. doi: 10.1038/nsb0402-234. [DOI] [PubMed] [Google Scholar]
  111. Philippe H., Germot A., Moreira D. The new phylogeny of eukaryotes. Curr Opin Genet Dev. 2000 Dec;10(6):596–601. doi: 10.1016/s0959-437x(00)00137-4. [DOI] [PubMed] [Google Scholar]
  112. Philippe H., Laurent J. How good are deep phylogenetic trees? Curr Opin Genet Dev. 1998 Dec;8(6):616–623. doi: 10.1016/s0959-437x(98)80028-2. [DOI] [PubMed] [Google Scholar]
  113. Poole A. M., Jeffares D. C., Penny D. The path from the RNA world. J Mol Evol. 1998 Jan;46(1):1–17. doi: 10.1007/pl00006275. [DOI] [PubMed] [Google Scholar]
  114. Poole A., Jeffares D., Penny D. Early evolution: prokaryotes, the new kids on the block. Bioessays. 1999 Oct;21(10):880–889. doi: 10.1002/(SICI)1521-1878(199910)21:10<880::AID-BIES11>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  115. Poole A., Penny D., Sjöberg B. Methyl-RNA: an evolutionary bridge between RNA and DNA? Chem Biol. 2000 Dec;7(12):R207–R216. doi: 10.1016/S1074-5521(00)00042-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Quayle J. R., Ferenci T. Evolutionary aspects of autotrophy. Microbiol Rev. 1978 Jun;42(2):251–273. doi: 10.1128/mr.42.2.251-273.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Reeve J. N., Sandman K., Daniels C. J. Archaeal histones, nucleosomes, and transcription initiation. Cell. 1997 Jun 27;89(7):999–1002. doi: 10.1016/s0092-8674(00)80286-x. [DOI] [PubMed] [Google Scholar]
  118. Reichard P. The evolution of ribonucleotide reduction. Trends Biochem Sci. 1997 Mar;22(3):81–85. doi: 10.1016/s0968-0004(97)01003-7. [DOI] [PubMed] [Google Scholar]
  119. Rivera M. C., Jain R., Moore J. E., Lake J. A. Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6239–6244. doi: 10.1073/pnas.95.11.6239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Roger A. J., Doolittle W. F. Molecular evolution. Why introns-in-pieces? Nature. 1993 Jul 22;364(6435):289–290. doi: 10.1038/364289a0. [DOI] [PubMed] [Google Scholar]
  121. Roger A. J., Svärd S. G., Tovar J., Clark C. G., Smith M. W., Gillin F. D., Sogin M. L. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):229–234. doi: 10.1073/pnas.95.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Roger AJ. Reconstructing Early Events in Eukaryotic Evolution. Am Nat. 1999 Oct;154(S4):S146–S163. doi: 10.1086/303290. [DOI] [PubMed] [Google Scholar]
  123. Rosing MT. 13C-Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west greenland . Science. 1999 Jan 29;283(5402):674–676. doi: 10.1126/science.283.5402.674. [DOI] [PubMed] [Google Scholar]
  124. Rotte C., Martin W. Does endo-symbiosis explain the origin of the nucleus? Nat Cell Biol. 2001 Aug;3(8):E173–E174. doi: 10.1038/35087104. [DOI] [PubMed] [Google Scholar]
  125. Rotte C., Stejskal F., Zhu G., Keithly J. S., Martin W. Pyruvate : NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol. 2001 May;18(5):710–720. doi: 10.1093/oxfordjournals.molbev.a003853. [DOI] [PubMed] [Google Scholar]
  126. Rujan T., Martin W. How many genes in Arabidopsis come from cyanobacteria? An estimate from 386 protein phylogenies. Trends Genet. 2001 Mar;17(3):113–120. doi: 10.1016/s0168-9525(00)02209-5. [DOI] [PubMed] [Google Scholar]
  127. Russell M. J., Hall A. J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc London. 1997 May;154(3):377–402. doi: 10.1144/gsjgs.154.3.0377. [DOI] [PubMed] [Google Scholar]
  128. Sagan C., Chyba C. The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science. 1997 May 23;276(5316):1217–1221. doi: 10.1126/science.276.5316.1217. [DOI] [PubMed] [Google Scholar]
  129. Sagan L. On the origin of mitosing cells. J Theor Biol. 1967 Mar;14(3):255–274. doi: 10.1016/0022-5193(67)90079-3. [DOI] [PubMed] [Google Scholar]
  130. Sanchez R. A., Ferris J. P., Orgel L. E. Studies in prebiotic synthesis. II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. J Mol Biol. 1967 Dec 14;30(2):223–253. [PubMed] [Google Scholar]
  131. Sandman K., Reeve J. N. Origin of the eukaryotic nucleus. Science. 1998 Apr 24;280(5363):501–503. doi: 10.1126/science.280.5363.499d. [DOI] [PubMed] [Google Scholar]
  132. Schnarrenberger Claus, Martin William. Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants. A case study of endosymbiotic gene transfer. Eur J Biochem. 2002 Feb;269(3):868–883. doi: 10.1046/j.0014-2956.2001.02722.x. [DOI] [PubMed] [Google Scholar]
  133. Schoonen M. A., Xu Y., Bebie J. Energetics and kinetics of the prebiotic synthesis of simple organic acids and amino acids with the FeS-H2S/FeS2 redox couple as reductant. Orig Life Evol Biosph. 1999 Jan;29(1):5–32. doi: 10.1023/a:1006558802113. [DOI] [PubMed] [Google Scholar]
  134. Schouten S., Bowman J. P., Rijpstra W. I., Sinninghe Damsté J. S. Sterols in a psychrophilic methanotroph, Methylosphaera hansonii. FEMS Microbiol Lett. 2000 May 15;186(2):193–195. doi: 10.1111/j.1574-6968.2000.tb09103.x. [DOI] [PubMed] [Google Scholar]
  135. Schramm A., Siebers B., Tjaden B., Brinkmann H., Hensel R. Pyruvate kinase of the hyperthermophilic crenarchaeote Thermoproteus tenax: physiological role and phylogenetic aspects. J Bacteriol. 2000 Apr;182(7):2001–2009. doi: 10.1128/jb.182.7.2001-2009.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Schulte M., Shock E. Thermodynamics of Strecker synthesis in hydrothermal systems. Orig Life Evol Biosph. 1995 Jun;25(1-3):161–173. doi: 10.1007/BF01581580. [DOI] [PubMed] [Google Scholar]
  137. Schäfer G., Engelhard M., Müller V. Bioenergetics of the Archaea. Microbiol Mol Biol Rev. 1999 Sep;63(3):570–620. doi: 10.1128/mmbr.63.3.570-620.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Schütz M., Brugna M., Lebrun E., Baymann F., Huber R., Stetter K. O., Hauska G., Toci R., Lemesle-Meunier D., Tron P. Early evolution of cytochrome bc complexes. J Mol Biol. 2000 Jul 21;300(4):663–675. doi: 10.1006/jmbi.2000.3915. [DOI] [PubMed] [Google Scholar]
  139. Segré D., Lancet D. Composing life. EMBO Rep. 2000 Sep;1(3):217–222. doi: 10.1093/embo-reports/kvd063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Selig M., Xavier K. B., Santos H., Schönheit P. Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch Microbiol. 1997 Apr;167(4):217–232. doi: 10.1007/BF03356097. [DOI] [PubMed] [Google Scholar]
  141. Sogin M. L., Gunderson J. H., Elwood H. J., Alonso R. A., Peattie D. A. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science. 1989 Jan 6;243(4887):75–77. doi: 10.1126/science.2911720. [DOI] [PubMed] [Google Scholar]
  142. Spiess F. N., Macdonald K. C., Atwater T., Ballard R., Carranza A., Cordoba D., Cox C., Garcia V. M., Francheteau J., Guerrero J., Hawkins J., Haymon R., Hessler R., Juteau T., Kastner M., Larson R., Luyendyk B., Macdougall J. D., Miller S., Normark W., Orcutt J., Rangin C. East pacific rise: hot springs and geophysical experiments. Science. 1980 Mar 28;207(4438):1421–1433. doi: 10.1126/science.207.4438.1421. [DOI] [PubMed] [Google Scholar]
  143. Srinivasan Gayathri, James Carey M., Krzycki Joseph A. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science. 2002 May 24;296(5572):1459–1462. doi: 10.1126/science.1069588. [DOI] [PubMed] [Google Scholar]
  144. Suguri S., Henze K., Sánchez L. B., Moore D. V., Müller M. Archaebacterial relationships of the phosphoenolpyruvate carboxykinase gene reveal mosaicism of Giardia intestinalis core metabolism. J Eukaryot Microbiol. 2001 Jul-Aug;48(4):493–497. doi: 10.1111/j.1550-7408.2001.tb00184.x. [DOI] [PubMed] [Google Scholar]
  145. Sánchez L. B., Galperin M. Y., Müller M. Acetyl-CoA synthetase from the amitochondriate eukaryote Giardia lamblia belongs to the newly recognized superfamily of acyl-CoA synthetases (Nucleoside diphosphate-forming). J Biol Chem. 2000 Feb 25;275(8):5794–5803. doi: 10.1074/jbc.275.8.5794. [DOI] [PubMed] [Google Scholar]
  146. Tachezy J., Sánchez L. B., Müller M. Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol. 2001 Oct;18(10):1919–1928. doi: 10.1093/oxfordjournals.molbev.a003732. [DOI] [PubMed] [Google Scholar]
  147. Thauer R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology. 1998 Sep;144(Pt 9):2377–2406. doi: 10.1099/00221287-144-9-2377. [DOI] [PubMed] [Google Scholar]
  148. Thomm M. Archaeal transcription factors and their role in transcription initiation. FEMS Microbiol Rev. 1996 May;18(2-3):159–171. doi: 10.1111/j.1574-6976.1996.tb00234.x. [DOI] [PubMed] [Google Scholar]
  149. Truscott K. N., Pfanner N., Voos W. Transport of proteins into mitochondria. Rev Physiol Biochem Pharmacol. 2001;143:81–136. doi: 10.1007/BFb0115593. [DOI] [PubMed] [Google Scholar]
  150. Tye B. K. Insights into DNA replication from the third domain of life. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2399–2401. doi: 10.1073/pnas.97.6.2399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Van Valen L. M., Maiorana V. C. The archaebacteria and eukaryotic origins. Nature. 1980 Sep 18;287(5779):248–250. doi: 10.1038/287248a0. [DOI] [PubMed] [Google Scholar]
  152. Voncken Frank, Boxma Brigitte, Tjaden Joachim, Akhmanova Anna, Huynen Martijn, Verbeek Fons, Tielens Aloysius G. M., Haferkamp Ilka, Neuhaus H. Ekkehard, Vogels Godfried. Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol Microbiol. 2002 Jun;44(6):1441–1454. doi: 10.1046/j.1365-2958.2002.02959.x. [DOI] [PubMed] [Google Scholar]
  153. Vossbrinck C. R., Maddox J. V., Friedman S., Debrunner-Vossbrinck B. A., Woese C. R. Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. 1987 Mar 26-Apr 1Nature. 326(6111):411–414. doi: 10.1038/326411a0. [DOI] [PubMed] [Google Scholar]
  154. Weber A. L. Prebiotic polymerization: oxidative polymerization of 2,3-dimercapto-1-propanol on the surface of iron(III) hydroxide oxide. Orig Life Evol Biosph. 1995 Jun;25(1-3):53–60. doi: 10.1007/BF01581573. [DOI] [PubMed] [Google Scholar]
  155. Whatley J. M., John P., Whatley F. R. From extracellular to intracellular: the establishment of mitochondria and chloroplasts. Proc R Soc Lond B Biol Sci. 1979 Apr 11;204(1155):165–187. doi: 10.1098/rspb.1979.0020. [DOI] [PubMed] [Google Scholar]
  156. White R. H. Biosynthesis of the methanogenic cofactors. Vitam Horm. 2001;61:299–337. doi: 10.1016/s0083-6729(01)61010-0. [DOI] [PubMed] [Google Scholar]
  157. White R. H. Purine biosynthesis in the domain Archaea without folates or modified folates. J Bacteriol. 1997 May;179(10):3374–3377. doi: 10.1128/jb.179.10.3374-3377.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Wilde S. A., Valley J. W., Peck W. H., Graham C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature. 2001 Jan 11;409(6817):175–178. doi: 10.1038/35051550. [DOI] [PubMed] [Google Scholar]
  159. Williams Bryony A. P., Hirt Robert P., Lucocq John M., Embley T. Martin. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature. 2002 Aug 22;418(6900):865–869. doi: 10.1038/nature00949. [DOI] [PubMed] [Google Scholar]
  160. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Woese Carl R. On the evolution of cells. Proc Natl Acad Sci U S A. 2002 Jun 19;99(13):8742–8747. doi: 10.1073/pnas.132266999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Wächtershäuser G. Before enzymes and templates: theory of surface metabolism. Microbiol Rev. 1988 Dec;52(4):452–484. doi: 10.1128/mr.52.4.452-484.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Xiong Jin, Bauer Carl E. A cytochrome b origin of photosynthetic reaction centers: an evolutionary link between respiration and photosynthesis. J Mol Biol. 2002 Oct 4;322(5):1025–1037. doi: 10.1016/s0022-2836(02)00822-7. [DOI] [PubMed] [Google Scholar]
  165. Yang D., Oyaizu Y., Oyaizu H., Olsen G. J., Woese C. R. Mitochondrial origins. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4443–4447. doi: 10.1073/pnas.82.13.4443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Zillig W. Comparative biochemistry of Archaea and Bacteria. Curr Opin Genet Dev. 1991 Dec;1(4):544–551. doi: 10.1016/s0959-437x(05)80206-0. [DOI] [PubMed] [Google Scholar]
  167. van der Giezen Mark, Slotboom Dirk Jan, Horner David S., Dyal Patricia L., Harding Marilyn, Xue Gang-Ping, Embley T. Martin, Kunji Edmund R. S. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J. 2002 Feb 15;21(4):572–579. doi: 10.1093/emboj/21.4.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. von Dohlen C. D., Kohler S., Alsop S. T., McManus W. R. Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. Nature. 2001 Jul 26;412(6845):433–436. doi: 10.1038/35086563. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES