Abstract
We define 'genetic individuality' as intraspecies variation that has substantial heritability and involves traits that are sufficiently common that they can be observed in any modest-sized sampling of individuals. We propose that genetic individuality is largely shaped by the combinatory shuffling of a modest number of genes, each of which exists as a family of functionally and structurally diverged alleles. Unequivocal examples of such allele families are found at the O-antigen-biosynthetic locus in Pseudomonas aeruginosa and the human leucocyte antigen locus in humans. We examine characteristic features of these allele families and explore the possibility that genetic loci with similar characteristics can be recognized in a whole-genome scan of human genetic variation.
Full Text
The Full Text of this article is available as a PDF (158.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alm R. A., Trust T. J. Analysis of the genetic diversity of Helicobacter pylori: the tale of two genomes. J Mol Med (Berl) 1999 Dec;77(12):834–846. doi: 10.1007/s001099900067. [DOI] [PubMed] [Google Scholar]
- Ardlie Kristin G., Kruglyak Leonid, Seielstad Mark. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet. 2002 Apr;3(4):299–309. doi: 10.1038/nrg777. [DOI] [PubMed] [Google Scholar]
- Curd H., Liu D., Reeves P. R. Relationships among the O-antigen gene clusters of Salmonella enterica groups B, D1, D2, and D3. J Bacteriol. 1998 Feb;180(4):1002–1007. doi: 10.1128/jb.180.4.1002-1007.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curnoe D., Thorne A. Number of ancestral human species: a molecular perspective. Homo. 2003;53(3):201–224. doi: 10.1078/0018-442x-00051. [DOI] [PubMed] [Google Scholar]
- Deng Wen, Burland Valerie, Plunkett Guy, 3rd, Boutin Adam, Mayhew George F., Liss Paul, Perna Nicole T., Rose Debra J., Mau Bob, Zhou Shiguo. Genome sequence of Yersinia pestis KIM. J Bacteriol. 2002 Aug;184(16):4601–4611. doi: 10.1128/JB.184.16.4601-4611.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu Y. X., Li W. H. Coalescing into the 21st century: An overview and prospects of coalescent theory. Theor Popul Biol. 1999 Aug;56(1):1–10. doi: 10.1006/tpbi.1999.1421. [DOI] [PubMed] [Google Scholar]
- Goodman M. The genomic record of Humankind's evolutionary roots. Am J Hum Genet. 1999 Jan;64(1):31–39. doi: 10.1086/302218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guillaudeux T., Janer M., Wong G. K., Spies T., Geraghty D. E. The complete genomic sequence of 424,015 bp at the centromeric end of the HLA class I region: gene content and polymorphism. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9494–9499. doi: 10.1073/pnas.95.16.9494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guénet Jean Louis, Bonhomme François. Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet. 2003 Jan;19(1):24–31. doi: 10.1016/s0168-9525(02)00007-0. [DOI] [PubMed] [Google Scholar]
- Harpending H. C., Batzer M. A., Gurven M., Jorde L. B., Rogers A. R., Sherry S. T. Genetic traces of ancient demography. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1961–1967. doi: 10.1073/pnas.95.4.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harpending H., Rogers A. Genetic perspectives on human origins and differentiation. Annu Rev Genomics Hum Genet. 2000;1:361–385. doi: 10.1146/annurev.genom.1.1.361. [DOI] [PubMed] [Google Scholar]
- Hofreiter M., Serre D., Poinar H. N., Kuch M., Päbo S. Ancient DNA. Nat Rev Genet. 2001 May;2(5):353–359. doi: 10.1038/35072071. [DOI] [PubMed] [Google Scholar]
- Horton R., Niblett D., Milne S., Palmer S., Tubby B., Trowsdale J., Beck S. Large-scale sequence comparisons reveal unusually high levels of variation in the HLA-DQB1 locus in the class II region of the human MHC. J Mol Biol. 1998 Sep 11;282(1):71–97. doi: 10.1006/jmbi.1998.2018. [DOI] [PubMed] [Google Scholar]
- Hughes A. L., Yeager M. Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet. 1998;32:415–435. doi: 10.1146/annurev.genet.32.1.415. [DOI] [PubMed] [Google Scholar]
- Jeffreys A. J., Kauppi L., Neumann R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet. 2001 Oct;29(2):217–222. doi: 10.1038/ng1001-217. [DOI] [PubMed] [Google Scholar]
- Johnson M. E., Viggiano L., Bailey J. A., Abdul-Rauf M., Goodwin G., Rocchi M., Eichler E. E. Positive selection of a gene family during the emergence of humans and African apes. Nature. 2001 Oct 4;413(6855):514–519. doi: 10.1038/35097067. [DOI] [PubMed] [Google Scholar]
- Kauppi Liisa, Sajantila Antti, Jeffreys Alec J. Recombination hotspots rather than population history dominate linkage disequilibrium in the MHC class II region. Hum Mol Genet. 2003 Jan 1;12(1):33–40. doi: 10.1093/hmg/ddg008. [DOI] [PubMed] [Google Scholar]
- Klein J. Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Hum Immunol. 1987 Jul;19(3):155–162. doi: 10.1016/0198-8859(87)90066-8. [DOI] [PubMed] [Google Scholar]
- Klein J., Sato A. The HLA system. First of two parts. N Engl J Med. 2000 Sep 7;343(10):702–709. doi: 10.1056/NEJM200009073431006. [DOI] [PubMed] [Google Scholar]
- Klein J., Sato A. The HLA system. Second of two parts. N Engl J Med. 2000 Sep 14;343(11):782–786. doi: 10.1056/NEJM200009143431106. [DOI] [PubMed] [Google Scholar]
- Knott S. A., Marklund L., Haley C. S., Andersson K., Davies W., Ellegren H., Fredholm M., Hansson I., Hoyheim B., Lundström K. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics. 1998 Jun;149(2):1069–1080. doi: 10.1093/genetics/149.2.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreitman M. Methods to detect selection in populations with applications to the human. Annu Rev Genomics Hum Genet. 2000;1:539–559. doi: 10.1146/annurev.genom.1.1.539. [DOI] [PubMed] [Google Scholar]
- Kumar S., Tamura K., Jakobsen I. B., Nei M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 2001 Dec;17(12):1244–1245. doi: 10.1093/bioinformatics/17.12.1244. [DOI] [PubMed] [Google Scholar]
- McPherson J. D., Marra M., Hillier L., Waterston R. H., Chinwalla A., Wallis J., Sekhon M., Wylie K., Mardis E. R., Wilson R. K. A physical map of the human genome. Nature. 2001 Feb 15;409(6822):934–941. doi: 10.1038/35057157. [DOI] [PubMed] [Google Scholar]
- Potts W. K., Slev P. R. Pathogen-based models favoring MHC genetic diversity. Immunol Rev. 1995 Feb;143:181–197. doi: 10.1111/j.1600-065x.1995.tb00675.x. [DOI] [PubMed] [Google Scholar]
- Raymond Christopher K., Sims Elizabeth H., Kas Arnold, Spencer David H., Kutyavin Tanya V., Ivey Richard G., Zhou Yang, Kaul Rajinder, Clendenning James B., Olson Maynard V. Genetic variation at the O-antigen biosynthetic locus in Pseudomonas aeruginosa. J Bacteriol. 2002 Jul;184(13):3614–3622. doi: 10.1128/JB.184.13.3614-3622.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reeves P. P., Wang L. Genomic organization of LPS-specific loci. Curr Top Microbiol Immunol. 2002;264(1):109–135. [PubMed] [Google Scholar]
- Richman A. Evolution of balanced genetic polymorphism. Mol Ecol. 2000 Dec;9(12):1953–1963. doi: 10.1046/j.1365-294x.2000.01125.x. [DOI] [PubMed] [Google Scholar]
- Rocchetta H. L., Burrows L. L., Lam J. S. Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 1999 Sep;63(3):523–553. doi: 10.1128/mmbr.63.3.523-553.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenberg Noah A., Nordborg Magnus. Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat Rev Genet. 2002 May;3(5):380–390. doi: 10.1038/nrg795. [DOI] [PubMed] [Google Scholar]
- Sachidanandam R., Weissman D., Schmidt S. C., Kakol J. M., Stein L. D., Marth G., Sherry S., Mullikin J. C., Mortimore B. J., Willey D. L. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001 Feb 15;409(6822):928–933. doi: 10.1038/35057149. [DOI] [PubMed] [Google Scholar]
- Spencer David H., Kas Arnold, Smith Eric E., Raymond Christopher K., Sims Elizabeth H., Hastings Michele, Burns Jane L., Kaul Rajinder, Olson Maynard V. Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. J Bacteriol. 2003 Feb;185(4):1316–1325. doi: 10.1128/JB.185.4.1316-1325.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J., Lagrou M. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000 Aug 31;406(6799):959–964. doi: 10.1038/35023079. [DOI] [PubMed] [Google Scholar]
- Szabó V. M., Burr B. Simple inheritance of key traits distinguishing maize and teosinte. Mol Gen Genet. 1996 Aug 27;252(1-2):33–41. doi: 10.1007/BF02173202. [DOI] [PubMed] [Google Scholar]
- Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
