Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2001 May;38(5):285–303. doi: 10.1136/jmg.38.5.285

Methylation matters

J Costello 1, C Plass 1
PMCID: PMC1734882  PMID: 11333864

Abstract

DNA methylation is not just for basic scientists any more. There is a growing awareness in the medical field that having the correct pattern of genomic methylation is essential for healthy cells and organs. If methylation patterns are not properly established or maintained, disorders as diverse as mental retardation, immune deficiency, and sporadic or inherited cancers may follow. Through inappropriate silencing of growth regulating genes and simultaneous destabilisation of whole chromosomes, methylation defects help create a chaotic state from which cancer cells evolve. Methylation defects are present in cells before the onset of obvious malignancy and therefore cannot be explained simply as a consequence of a deregulated cancer cell. Researchers are now able to detect with exquisite sensitivity the cells harbouring methylation defects, sometimes months or years before the time when cancer is clinically detectable. Furthermore, aberrant methylation of specific genes has been directly linked with the tumour response to chemotherapy and patient survival. Advances in our ability to observe the methylation status of the entire cancer cell genome have led us to the unmistakable conclusion that methylation abnormalities are far more prevalent than expected. This methylomics approach permits the integration of an ever growing repertoire of methylation defects with the genetic alterations catalogued from tumours over the past two decades. Here we discuss the current knowledge of DNA methylation in normal cells and disease states, and how this relates directly to our current understanding of the mechanisms by which tumours arise.


Keywords: methylation; cancer

Full Text

The Full Text of this article is available as a PDF (264.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adany R., Iozzo R. V. Altered methylation of versican proteoglycan gene in human colon carcinoma. Biochem Biophys Res Commun. 1990 Sep 28;171(3):1402–1413. doi: 10.1016/0006-291x(90)90841-a. [DOI] [PubMed] [Google Scholar]
  2. Aggerholm A., Hokland P. DAP-kinase CpG island methylation in acute myeloid leukemia: methodology versus biology? Blood. 2000 May 1;95(9):2997–2999. [PubMed] [Google Scholar]
  3. Akama T. O., Okazaki Y., Ito M., Okuizumi H., Konno H., Muramatsu M., Plass C., Held W. A., Hayashizaki Y. Restriction landmark genomic scanning (RLGS-M)-based genome-wide scanning of mouse liver tumors for alterations in DNA methylation status. Cancer Res. 1997 Aug 1;57(15):3294–3299. [PubMed] [Google Scholar]
  4. Alves G., Tatro A., Fanning T. Differential methylation of human LINE-1 retrotransposons in malignant cells. Gene. 1996 Oct 17;176(1-2):39–44. doi: 10.1016/0378-1119(96)00205-3. [DOI] [PubMed] [Google Scholar]
  5. Amir R. E., Van den Veyver I. B., Schultz R., Malicki D. M., Tran C. Q., Dahle E. J., Philippi A., Timar L., Percy A. K., Motil K. J. Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Ann Neurol. 2000 May;47(5):670–679. [PubMed] [Google Scholar]
  6. Amir R. E., Van den Veyver I. B., Wan M., Tran C. Q., Francke U., Zoghbi H. Y. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999 Oct;23(2):185–188. doi: 10.1038/13810. [DOI] [PubMed] [Google Scholar]
  7. Antequera F., Bird A. CpG islands. EXS. 1993;64:169–185. doi: 10.1007/978-3-0348-9118-9_8. [DOI] [PubMed] [Google Scholar]
  8. Antequera F., Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11995–11999. doi: 10.1073/pnas.90.24.11995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Arapshian A., Kuppumbatti Y. S., Mira-y-Lopez R. Methylation of conserved CpG sites neighboring the beta retinoic acid response element may mediate retinoic acid receptor beta gene silencing in MCF-7 breast cancer cells. Oncogene. 2000 Aug 17;19(35):4066–4070. doi: 10.1038/sj.onc.1203734. [DOI] [PubMed] [Google Scholar]
  10. Bachman K. E., Herman J. G., Corn P. G., Merlo A., Costello J. F., Cavenee W. K., Baylin S. B., Graff J. R. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res. 1999 Feb 15;59(4):798–802. [PubMed] [Google Scholar]
  11. Bartolomei M. S., Webber A. L., Brunkow M. E., Tilghman S. M. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 1993 Sep;7(9):1663–1673. doi: 10.1101/gad.7.9.1663. [DOI] [PubMed] [Google Scholar]
  12. Baruchel A., Sigaux F. Hypermethylation of the calcitonin gene and leukemia. Nouv Rev Fr Hematol. 1991;33(6):551–553. [PubMed] [Google Scholar]
  13. Baylin S. B., Fearon E. R., Vogelstein B., de Bustros A., Sharkis S. J., Burke P. J., Staal S. P., Nelkin B. D. Hypermethylation of the 5' region of the calcitonin gene is a property of human lymphoid and acute myeloid malignancies. Blood. 1987 Aug;70(2):412–417. [PubMed] [Google Scholar]
  14. Baylin S. B., Herman J. G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000 Apr;16(4):168–174. doi: 10.1016/s0168-9525(99)01971-x. [DOI] [PubMed] [Google Scholar]
  15. Baylin S. B., Herman J. G., Graff J. R., Vertino P. M., Issa J. P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–196. [PubMed] [Google Scholar]
  16. Baylin S. B., Höppener J. W., de Bustros A., Steenbergh P. H., Lips C. J., Nelkin B. D. DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res. 1986 Jun;46(6):2917–2922. [PubMed] [Google Scholar]
  17. Belinsky S. A., Nikula K. J., Palmisano W. A., Michels R., Saccomanno G., Gabrielson E., Baylin S. B., Herman J. G. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11891–11896. doi: 10.1073/pnas.95.20.11891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Belinsky S. A. Role of the cytosine DNA-methyltransferase and p16INK4a genes in the development of mouse lung tumors. Exp Lung Res. 1998 Jul-Aug;24(4):463–479. doi: 10.3109/01902149809087381. [DOI] [PubMed] [Google Scholar]
  19. Bell A. C., Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature. 2000 May 25;405(6785):482–485. doi: 10.1038/35013100. [DOI] [PubMed] [Google Scholar]
  20. Bestor T. H. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 1992 Jul;11(7):2611–2617. doi: 10.1002/j.1460-2075.1992.tb05326.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bestor T. H. The host defence function of genomic methylation patterns. Novartis Found Symp. 1998;214:187-95; discussion 195-9, 228-32. doi: 10.1002/9780470515501.ch11. [DOI] [PubMed] [Google Scholar]
  22. Bestor T. H., Tycko B. Creation of genomic methylation patterns. Nat Genet. 1996 Apr;12(4):363–367. doi: 10.1038/ng0496-363. [DOI] [PubMed] [Google Scholar]
  23. Bestor T., Laudano A., Mattaliano R., Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol. 1988 Oct 20;203(4):971–983. doi: 10.1016/0022-2836(88)90122-2. [DOI] [PubMed] [Google Scholar]
  24. Bestor T. Supercoiling-dependent sequence specificity of mammalian DNA methyltransferase. Nucleic Acids Res. 1987 May 11;15(9):3835–3843. doi: 10.1093/nar/15.9.3835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Bhattacharya S. K., Ramchandani S., Cervoni N., Szyf M. A mammalian protein with specific demethylase activity for mCpG DNA. Nature. 1999 Feb 18;397(6720):579–583. doi: 10.1038/17533. [DOI] [PubMed] [Google Scholar]
  26. Bianco T., Chenevix-Trench G., Walsh D. C., Cooper J. E., Dobrovic A. Tumour-specific distribution of BRCA1 promoter region methylation supports a pathogenetic role in breast and ovarian cancer. Carcinogenesis. 2000 Feb;21(2):147–151. doi: 10.1093/carcin/21.2.147. [DOI] [PubMed] [Google Scholar]
  27. Bird A. P. CpG-rich islands and the function of DNA methylation. Nature. 1986 May 15;321(6067):209–213. doi: 10.1038/321209a0. [DOI] [PubMed] [Google Scholar]
  28. Bird A. P., Wolffe A. P. Methylation-induced repression--belts, braces, and chromatin. Cell. 1999 Nov 24;99(5):451–454. doi: 10.1016/s0092-8674(00)81532-9. [DOI] [PubMed] [Google Scholar]
  29. Bird A., Taggart M., Frommer M., Miller O. J., Macleod D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell. 1985 Jan;40(1):91–99. doi: 10.1016/0092-8674(85)90312-5. [DOI] [PubMed] [Google Scholar]
  30. Bird A. The essentials of DNA methylation. Cell. 1992 Jul 10;70(1):5–8. doi: 10.1016/0092-8674(92)90526-i. [DOI] [PubMed] [Google Scholar]
  31. Bovenzi V., Lê N. L., Côte S., Sinnett D., Momparler L. F., Momparler R. L. DNA methylation of retinoic acid receptor beta in breast cancer and possible therapeutic role of 5-aza-2'-deoxycytidine. Anticancer Drugs. 1999 Jun;10(5):471–476. doi: 10.1097/00001813-199906000-00007. [DOI] [PubMed] [Google Scholar]
  32. Bovenzi V., Momparler R. L. Quantitation of inhibition of DNA methylation of the retinoic acid receptor beta gene by 5-Aza-2'-deoxycytidine in tumor cells using a single-nucleotide primer extension assay. Anal Biochem. 2000 May 15;281(1):55–61. doi: 10.1006/abio.2000.4562. [DOI] [PubMed] [Google Scholar]
  33. Brandeis M., Frank D., Keshet I., Siegfried Z., Mendelsohn M., Nemes A., Temper V., Razin A., Cedar H. Sp1 elements protect a CpG island from de novo methylation. Nature. 1994 Sep 29;371(6496):435–438. doi: 10.1038/371435a0. [DOI] [PubMed] [Google Scholar]
  34. Cairns P., Okami K., Halachmi S., Halachmi N., Esteller M., Herman J. G., Jen J., Isaacs W. B., Bova G. S., Sidransky D. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res. 1997 Nov 15;57(22):4997–5000. [PubMed] [Google Scholar]
  35. Cameron E. E., Bachman K. E., Myöhänen S., Herman J. G., Baylin S. B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999 Jan;21(1):103–107. doi: 10.1038/5047. [DOI] [PubMed] [Google Scholar]
  36. Cervoni N., Bhattacharya S., Szyf M. DNA demethylase is a processive enzyme. J Biol Chem. 1999 Mar 26;274(13):8363–8366. doi: 10.1074/jbc.274.13.8363. [DOI] [PubMed] [Google Scholar]
  37. Chen R. Z., Pettersson U., Beard C., Jackson-Grusby L., Jaenisch R. DNA hypomethylation leads to elevated mutation rates. Nature. 1998 Sep 3;395(6697):89–93. doi: 10.1038/25779. [DOI] [PubMed] [Google Scholar]
  38. Christman J. K., Sheikhnejad G., Dizik M., Abileah S., Wainfan E. Reversibility of changes in nucleic acid methylation and gene expression induced in rat liver by severe dietary methyl deficiency. Carcinogenesis. 1993 Apr;14(4):551–557. doi: 10.1093/carcin/14.4.551. [DOI] [PubMed] [Google Scholar]
  39. Chuang L. S., Ian H. I., Koh T. W., Ng H. H., Xu G., Li B. F. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science. 1997 Sep 26;277(5334):1996–2000. doi: 10.1126/science.277.5334.1996. [DOI] [PubMed] [Google Scholar]
  40. Clark S. J., Harrison J., Frommer M. CpNpG methylation in mammalian cells. Nat Genet. 1995 May;10(1):20–27. doi: 10.1038/ng0595-20. [DOI] [PubMed] [Google Scholar]
  41. Conway K. E., McConnell B. B., Bowring C. E., Donald C. D., Warren S. T., Vertino P. M. TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res. 2000 Nov 15;60(22):6236–6242. [PubMed] [Google Scholar]
  42. Corn P. G., Kuerbitz S. J., van Noesel M. M., Esteller M., Compitello N., Baylin S. B., Herman J. G. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5' CpG island methylation. Cancer Res. 1999 Jul 15;59(14):3352–3356. [PubMed] [Google Scholar]
  43. Costello J. F., Berger M. S., Huang H. S., Cavenee W. K. Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res. 1996 May 15;56(10):2405–2410. [PubMed] [Google Scholar]
  44. Costello J. F., Frühwald M. C., Smiraglia D. J., Rush L. J., Robertson G. P., Gao X., Wright F. A., Feramisco J. D., Peltomäki P., Lang J. C. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet. 2000 Feb;24(2):132–138. doi: 10.1038/72785. [DOI] [PubMed] [Google Scholar]
  45. Costello J. F., Futscher B. W., Kroes R. A., Pieper R. O. Methylation-related chromatin structure is associated with exclusion of transcription factors from and suppressed expression of the O-6-methylguanine DNA methyltransferase gene in human glioma cell lines. Mol Cell Biol. 1994 Oct;14(10):6515–6521. doi: 10.1128/mcb.14.10.6515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Costello J. F., Futscher B. W., Tano K., Graunke D. M., Pieper R. O. Graded methylation in the promoter and body of the O6-methylguanine DNA methyltransferase (MGMT) gene correlates with MGMT expression in human glioma cells. J Biol Chem. 1994 Jun 24;269(25):17228–17237. [PubMed] [Google Scholar]
  47. Costello J. F., Plass C., Arap W., Chapman V. M., Held W. A., Berger M. S., Su Huang H. J., Cavenee W. K. Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. Cancer Res. 1997 Apr 1;57(7):1250–1254. [PubMed] [Google Scholar]
  48. Cravo M., Pinto R., Fidalgo P., Chaves P., Glória L., Nobre-Leitão C., Costa Mira F. Global DNA hypomethylation occurs in the early stages of intestinal type gastric carcinoma. Gut. 1996 Sep;39(3):434–438. doi: 10.1136/gut.39.3.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Dammann R., Li C., Yoon J. H., Chin P. L., Bates S., Pfeifer G. P. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet. 2000 Jul;25(3):315–319. doi: 10.1038/77083. [DOI] [PubMed] [Google Scholar]
  50. De Plaen E., Arden K., Traversari C., Gaforio J. J., Szikora J. P., De Smet C., Brasseur F., van der Bruggen P., Lethé B., Lurquin C. Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics. 1994;40(5):360–369. doi: 10.1007/BF01246677. [DOI] [PubMed] [Google Scholar]
  51. De Smet C., Courtois S. J., Faraoni I., Lurquin C., Szikora J. P., De Backer O., Boon T. Involvement of two Ets binding sites in the transcriptional activation of the MAGE1 gene. Immunogenetics. 1995;42(4):282–290. doi: 10.1007/BF00176446. [DOI] [PubMed] [Google Scholar]
  52. De Smet C., De Backer O., Faraoni I., Lurquin C., Brasseur F., Boon T. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7149–7153. doi: 10.1073/pnas.93.14.7149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. De Smet C., Lurquin C., Lethé B., Martelange V., Boon T. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol. 1999 Nov;19(11):7327–7335. doi: 10.1128/mcb.19.11.7327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Del Senno L., Maestri I., Piva R., Hanau S., Reggiani A., Romano A., Russo G. Differential hypomethylation of the c-myc protooncogene in bladder cancers at different stages and grades. J Urol. 1989 Jul;142(1):146–149. doi: 10.1016/s0022-5347(17)38700-1. [DOI] [PubMed] [Google Scholar]
  55. Deng G., Chen A., Hong J., Chae H. S., Kim Y. S. Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res. 1999 May 1;59(9):2029–2033. [PubMed] [Google Scholar]
  56. Denissenko M. F., Pao A., Tang M., Pfeifer G. P. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996 Oct 18;274(5286):430–432. doi: 10.1126/science.274.5286.430. [DOI] [PubMed] [Google Scholar]
  57. Dessain S. K., Yu H., Reddel R. R., Beijersbergen R. L., Weinberg R. A. Methylation of the human telomerase gene CpG island. Cancer Res. 2000 Feb 1;60(3):537–541. [PubMed] [Google Scholar]
  58. Devereux T. R., Horikawa I., Anna C. H., Annab L. A., Afshari C. A., Barrett J. C. DNA methylation analysis of the promoter region of the human telomerase reverse transcriptase (hTERT) gene. Cancer Res. 1999 Dec 15;59(24):6087–6090. [PubMed] [Google Scholar]
  59. Dodge J. E., List A. F., Futscher B. W. Selective variegated methylation of the p15 CpG island in acute myeloid leukemia. Int J Cancer. 1998 Nov 23;78(5):561–567. doi: 10.1002/(sici)1097-0215(19981123)78:5<561::aid-ijc6>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  60. Doerfler W. DNA methylation and gene activity. Annu Rev Biochem. 1983;52:93–124. doi: 10.1146/annurev.bi.52.070183.000521. [DOI] [PubMed] [Google Scholar]
  61. Domann F. E., Rice J. C., Hendrix M. J., Futscher B. W. Epigenetic silencing of maspin gene expression in human breast cancers. Int J Cancer. 2000 Mar 15;85(6):805–810. doi: 10.1002/(sici)1097-0215(20000315)85:6<805::aid-ijc12>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  62. Eads C. A., Lord R. V., Kurumboor S. K., Wickramasinghe K., Skinner M. L., Long T. I., Peters J. H., DeMeester T. R., Danenberg K. D., Danenberg P. V. Fields of aberrant CpG island hypermethylation in Barrett's esophagus and associated adenocarcinoma. Cancer Res. 2000 Sep 15;60(18):5021–5026. [PubMed] [Google Scholar]
  63. Ehrlich M., Zhang X. Y., Inamdar N. M. Spontaneous deamination of cytosine and 5-methylcytosine residues in DNA and replacement of 5-methylcytosine residues with cytosine residues. Mutat Res. 1990 May;238(3):277–286. doi: 10.1016/0165-1110(90)90019-8. [DOI] [PubMed] [Google Scholar]
  64. Esteller M., Avizienyte E., Corn P. G., Lothe R. A., Baylin S. B., Aaltonen L. A., Herman J. G. Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz-Jeghers syndrome. Oncogene. 2000 Jan 6;19(1):164–168. doi: 10.1038/sj.onc.1203227. [DOI] [PubMed] [Google Scholar]
  65. Esteller M., Catasus L., Matias-Guiu X., Mutter G. L., Prat J., Baylin S. B., Herman J. G. hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis. Am J Pathol. 1999 Nov;155(5):1767–1772. doi: 10.1016/S0002-9440(10)65492-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Esteller M., Corn P. G., Urena J. M., Gabrielson E., Baylin S. B., Herman J. G. Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res. 1998 Oct 15;58(20):4515–4518. [PubMed] [Google Scholar]
  67. Esteller M., Garcia-Foncillas J., Andion E., Goodman S. N., Hidalgo O. F., Vanaclocha V., Baylin S. B., Herman J. G. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000 Nov 9;343(19):1350–1354. doi: 10.1056/NEJM200011093431901. [DOI] [PubMed] [Google Scholar]
  68. Esteller M., Levine R., Baylin S. B., Ellenson L. H., Herman J. G. MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene. 1998 Nov 5;17(18):2413–2417. doi: 10.1038/sj.onc.1202178. [DOI] [PubMed] [Google Scholar]
  69. Esteller M., Silva J. M., Dominguez G., Bonilla F., Matias-Guiu X., Lerma E., Bussaglia E., Prat J., Harkes I. C., Repasky E. A. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000 Apr 5;92(7):564–569. doi: 10.1093/jnci/92.7.564. [DOI] [PubMed] [Google Scholar]
  70. Esteller M., Tortola S., Toyota M., Capella G., Peinado M. A., Baylin S. B., Herman J. G. Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res. 2000 Jan 1;60(1):129–133. [PubMed] [Google Scholar]
  71. Feinberg A. P., Gehrke C. W., Kuo K. C., Ehrlich M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res. 1988 Mar 1;48(5):1159–1161. [PubMed] [Google Scholar]
  72. Feinberg A. P., Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983 Jan 6;301(5895):89–92. doi: 10.1038/301089a0. [DOI] [PubMed] [Google Scholar]
  73. Ferguson A. T., Evron E., Umbricht C. B., Pandita T. K., Chan T. A., Hermeking H., Marks J. R., Lambers A. R., Futreal P. A., Stampfer M. R. High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci U S A. 2000 May 23;97(11):6049–6054. doi: 10.1073/pnas.100566997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Flavell R. B. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3490–3496. doi: 10.1073/pnas.91.9.3490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Fleisher A. S., Esteller M., Wang S., Tamura G., Suzuki H., Yin J., Zou T. T., Abraham J. M., Kong D., Smolinski K. N. Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res. 1999 Mar 1;59(5):1090–1095. [PubMed] [Google Scholar]
  76. Florl A. R., Löwer R., Schmitz-Dräger B. J., Schulz W. A. DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer. 1999 Jul;80(9):1312–1321. doi: 10.1038/sj.bjc.6690524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Foster S. A., Wong D. J., Barrett M. T., Galloway D. A. Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol Cell Biol. 1998 Apr;18(4):1793–1801. doi: 10.1128/mcb.18.4.1793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Fowler B. M., Giuliano A. R., Piyathilake C., Nour M., Hatch K. Hypomethylation in cervical tissue: is there a correlation with folate status? Cancer Epidemiol Biomarkers Prev. 1998 Oct;7(10):901–906. [PubMed] [Google Scholar]
  79. Frosst P., Blom H. J., Milos R., Goyette P., Sheppard C. A., Matthews R. G., Boers G. J., den Heijer M., Kluijtmans L. A., van den Heuvel L. P. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995 May;10(1):111–113. doi: 10.1038/ng0595-111. [DOI] [PubMed] [Google Scholar]
  80. Frühwald M. C., O'Dorisio M. S., Dai Z., Rush L. J., Krahe R., Smiraglia D. J., Pietsch T., Elsea S. H., Plass C. Aberrant hypermethylation of the major breakpoint cluster region in 17p11.2 in medulloblastomas but not supratentorial PNETs. Genes Chromosomes Cancer. 2001 Jan;30(1):38–47. [PubMed] [Google Scholar]
  81. Frühwald M. C., O'Dorisio M. S., Rush L. J., Reiter J. L., Smiraglia D. J., Wenger G., Costello J. F., White P. S., Krahe R., Brodeur G. M. Gene amplification in PNETs/medulloblastomas: mapping of a novel amplified gene within the MYCN amplicon. J Med Genet. 2000 Jul;37(7):501–509. doi: 10.1136/jmg.37.7.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Fujii H., Biel M. A., Zhou W., Weitzman S. A., Baylin S. B., Gabrielson E. Methylation of the HIC-1 candidate tumor suppressor gene in human breast cancer. Oncogene. 1998 Apr 23;16(16):2159–2164. doi: 10.1038/sj.onc.1201976. [DOI] [PubMed] [Google Scholar]
  83. Gama-Sosa M. A., Slagel V. A., Trewyn R. W., Oxenhandler R., Kuo K. C., Gehrke C. W., Ehrlich M. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 1983 Oct 11;11(19):6883–6894. doi: 10.1093/nar/11.19.6883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Gama-Sosa M. A., Wang R. Y., Kuo K. C., Gehrke C. W., Ehrlich M. The 5-methylcytosine content of highly repeated sequences in human DNA. Nucleic Acids Res. 1983 May 25;11(10):3087–3095. doi: 10.1093/nar/11.10.3087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Gardiner-Garden M., Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987 Jul 20;196(2):261–282. doi: 10.1016/0022-2836(87)90689-9. [DOI] [PubMed] [Google Scholar]
  86. Gartler S. M., Dyer K. A., Goldman M. A. Mammalian X chromosome inactivation. Mol Genet Med. 1992;2:121–160. doi: 10.1016/b978-0-12-462002-5.50010-8. [DOI] [PubMed] [Google Scholar]
  87. Glória L., Cravo M., Pinto A., de Sousa L. S., Chaves P., Leitão C. N., Quina M., Mira F. C., Soares J. DNA hypomethylation and proliferative activity are increased in the rectal mucosa of patients with long-standing ulcerative colitis. Cancer. 1996 Dec 1;78(11):2300–2306. doi: 10.1002/(sici)1097-0142(19961201)78:11<2300::aid-cncr5>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  88. Gonzalez-Zulueta M., Bender C. M., Yang A. S., Nguyen T., Beart R. W., Van Tornout J. M., Jones P. A. Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 1995 Oct 15;55(20):4531–4535. [PubMed] [Google Scholar]
  89. Gonzalgo M. L., Jones P. A. Mutagenic and epigenetic effects of DNA methylation. Mutat Res. 1997 Apr;386(2):107–118. doi: 10.1016/s1383-5742(96)00047-6. [DOI] [PubMed] [Google Scholar]
  90. Gonzalgo M. L., Liang G., Spruck C. H., 3rd, Zingg J. M., Rideout W. M., 3rd, Jones P. A. Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer Res. 1997 Feb 15;57(4):594–599. [PubMed] [Google Scholar]
  91. Goto T., Monk M. Regulation of X-chromosome inactivation in development in mice and humans. Microbiol Mol Biol Rev. 1998 Jun;62(2):362–378. doi: 10.1128/mmbr.62.2.362-378.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Gowher H., Leismann O., Jeltsch A. DNA of Drosophila melanogaster contains 5-methylcytosine. EMBO J. 2000 Dec 15;19(24):6918–6923. doi: 10.1093/emboj/19.24.6918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Grady W. M., Willis J., Guilford P. J., Dunbier A. K., Toro T. T., Lynch H., Wiesner G., Ferguson K., Eng C., Park J. G. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet. 2000 Sep;26(1):16–17. doi: 10.1038/79120. [DOI] [PubMed] [Google Scholar]
  94. Graff J. R., Gabrielson E., Fujii H., Baylin S. B., Herman J. G. Methylation patterns of the E-cadherin 5' CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem. 2000 Jan 28;275(4):2727–2732. doi: 10.1074/jbc.275.4.2727. [DOI] [PubMed] [Google Scholar]
  95. Graff J. R., Greenberg V. E., Herman J. G., Westra W. H., Boghaert E. R., Ain K. B., Saji M., Zeiger M. A., Zimmer S. G., Baylin S. B. Distinct patterns of E-cadherin CpG island methylation in papillary, follicular, Hurthle's cell, and poorly differentiated human thyroid carcinoma. Cancer Res. 1998 May 15;58(10):2063–2066. [PubMed] [Google Scholar]
  96. Graff J. R., Herman J. G., Lapidus R. G., Chopra H., Xu R., Jarrard D. F., Isaacs W. B., Pitha P. M., Davidson N. E., Baylin S. B. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res. 1995 Nov 15;55(22):5195–5199. [PubMed] [Google Scholar]
  97. Graff J. R., Herman J. G., Myöhänen S., Baylin S. B., Vertino P. M. Mapping patterns of CpG island methylation in normal and neoplastic cells implicates both upstream and downstream regions in de novo methylation. J Biol Chem. 1997 Aug 29;272(35):22322–22329. doi: 10.1074/jbc.272.35.22322. [DOI] [PubMed] [Google Scholar]
  98. Greenblatt M. S., Bennett W. P., Hollstein M., Harris C. C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994 Sep 15;54(18):4855–4878. [PubMed] [Google Scholar]
  99. Greger V., Passarge E., Höpping W., Messmer E., Horsthemke B. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet. 1989 Sep;83(2):155–158. doi: 10.1007/BF00286709. [DOI] [PubMed] [Google Scholar]
  100. Gu K., Mes-Masson A. M., Gauthier J., Saad F. Analysis of the p16 tumor suppressor gene in early-stage prostate cancer. Mol Carcinog. 1998 Mar;21(3):164–170. [PubMed] [Google Scholar]
  101. Haddad R., Morrow A. D., Plass C., Held W. A. Restriction landmark genomic scanning of mouse liver tumors for gene amplification: overexpression of cyclin A2. Biochem Biophys Res Commun. 2000 Jul 21;274(1):188–196. doi: 10.1006/bbrc.2000.3124. [DOI] [PubMed] [Google Scholar]
  102. Hagberg B., Aicardi J., Dias K., Ramos O. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome: report of 35 cases. Ann Neurol. 1983 Oct;14(4):471–479. doi: 10.1002/ana.410140412. [DOI] [PubMed] [Google Scholar]
  103. Hansen R. S., Wijmenga C., Luo P., Stanek A. M., Canfield T. K., Weemaes C. M., Gartler S. M. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14412–14417. doi: 10.1073/pnas.96.25.14412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Hark A. T., Schoenherr C. J., Katz D. J., Ingram R. S., Levorse J. M., Tilghman S. M. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature. 2000 May 25;405(6785):486–489. doi: 10.1038/35013106. [DOI] [PubMed] [Google Scholar]
  105. Harris C. C. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst. 1996 Oct 16;88(20):1442–1455. doi: 10.1093/jnci/88.20.1442. [DOI] [PubMed] [Google Scholar]
  106. Harris L. C., Remack J. S., Brent T. P. In vitro methylation of the human O6-methylguanine-DNA methyltransferase promoter reduces transcription. Biochim Biophys Acta. 1994 Mar 1;1217(2):141–146. doi: 10.1016/0167-4781(94)90027-2. [DOI] [PubMed] [Google Scholar]
  107. Hatada I., Hayashizaki Y., Hirotsune S., Komatsubara H., Mukai T. A genomic scanning method for higher organisms using restriction sites as landmarks. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9523–9527. doi: 10.1073/pnas.88.21.9523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Hayashizaki Y., Shibata H., Hirotsune S., Sugino H., Okazaki Y., Sasaki N., Hirose K., Imoto H., Okuizumi H., Muramatsu M. Identification of an imprinted U2af binding protein related sequence on mouse chromosome 11 using the RLGS method. Nat Genet. 1994 Jan;6(1):33–40. doi: 10.1038/ng0194-33. [DOI] [PubMed] [Google Scholar]
  109. Hendrich B., Bird A. Mammalian methyltransferases and methyl-CpG-binding domains: proteins involved in DNA methylation. Curr Top Microbiol Immunol. 2000;249:55–74. doi: 10.1007/978-3-642-59696-4_4. [DOI] [PubMed] [Google Scholar]
  110. Herman J. G., Civin C. I., Issa J. P., Collector M. I., Sharkis S. J., Baylin S. B. Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res. 1997 Mar 1;57(5):837–841. [PubMed] [Google Scholar]
  111. Herman J. G., Jen J., Merlo A., Baylin S. B. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res. 1996 Feb 15;56(4):722–727. [PubMed] [Google Scholar]
  112. Herman J. G., Latif F., Weng Y., Lerman M. I., Zbar B., Liu S., Samid D., Duan D. S., Gnarra J. R., Linehan W. M. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9700–9704. doi: 10.1073/pnas.91.21.9700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Herman J. G., Umar A., Polyak K., Graff J. R., Ahuja N., Issa J. P., Markowitz S., Willson J. K., Hamilton S. R., Kinzler K. W. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6870–6875. doi: 10.1073/pnas.95.12.6870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Hermeking H., Lengauer C., Polyak K., He T. C., Zhang L., Thiagalingam S., Kinzler K. W., Vogelstein B. 14-3-3sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell. 1997 Dec;1(1):3–11. doi: 10.1016/s1097-2765(00)80002-7. [DOI] [PubMed] [Google Scholar]
  115. Hernandez-Boussard T., Rodriguez-Tome P., Montesano R., Hainaut P. IARC p53 mutation database: a relational database to compile and analyze p53 mutations in human tumors and cell lines. International Agency for Research on Cancer. Hum Mutat. 1999;14(1):1–8. doi: 10.1002/(SICI)1098-1004(1999)14:1<1::AID-HUMU1>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  116. Hernandez R., Frady A., Zhang X. Y., Varela M., Ehrlich M. Preferential induction of chromosome 1 multibranched figures and whole-arm deletions in a human pro-B cell line treated with 5-azacytidine or 5-azadeoxycytidine. Cytogenet Cell Genet. 1997;76(3-4):196–201. doi: 10.1159/000134548. [DOI] [PubMed] [Google Scholar]
  117. Hobbs C. A., Sherman S. L., Yi P., Hopkins S. E., Torfs C. P., Hine R. J., Pogribna M., Rozen R., James S. J. Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome. Am J Hum Genet. 2000 Aug 7;67(3):623–630. doi: 10.1086/303055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Holliday R., Pugh J. E. DNA modification mechanisms and gene activity during development. Science. 1975 Jan 24;187(4173):226–232. [PubMed] [Google Scholar]
  119. Hollstein M., Shomer B., Greenblatt M., Soussi T., Hovig E., Montesano R., Harris C. C. Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res. 1996 Jan 1;24(1):141–146. doi: 10.1093/nar/24.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Hsieh C. L. Evidence that protein binding specifies sites of DNA demethylation. Mol Cell Biol. 1999 Jan;19(1):46–56. doi: 10.1128/mcb.19.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Hsieh C. L. In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol Cell Biol. 1999 Dec;19(12):8211–8218. doi: 10.1128/mcb.19.12.8211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Huang T. H., Laux D. E., Hamlin B. C., Tran P., Tran H., Lubahn D. B. Identification of DNA methylation markers for human breast carcinomas using the methylation-sensitive restriction fingerprinting technique. Cancer Res. 1997 Mar 15;57(6):1030–1034. [PubMed] [Google Scholar]
  123. Huschtscha L. I., Noble J. R., Neumann A. A., Moy E. L., Barry P., Melki J. R., Clark S. J., Reddel R. R. Loss of p16INK4 expression by methylation is associated with lifespan extension of human mammary epithelial cells. Cancer Res. 1998 Aug 15;58(16):3508–3512. [PubMed] [Google Scholar]
  124. Iguchi-Ariga S. M., Schaffner W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 1989 May;3(5):612–619. doi: 10.1101/gad.3.5.612. [DOI] [PubMed] [Google Scholar]
  125. Ionov Y., Peinado M. A., Malkhosyan S., Shibata D., Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993 Jun 10;363(6429):558–561. doi: 10.1038/363558a0. [DOI] [PubMed] [Google Scholar]
  126. Issa J. P. CpG-island methylation in aging and cancer. Curr Top Microbiol Immunol. 2000;249:101–118. doi: 10.1007/978-3-642-59696-4_7. [DOI] [PubMed] [Google Scholar]
  127. Issa J. P., Ottaviano Y. L., Celano P., Hamilton S. R., Davidson N. E., Baylin S. B. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet. 1994 Aug;7(4):536–540. doi: 10.1038/ng0894-536. [DOI] [PubMed] [Google Scholar]
  128. Itano O., Ueda M., Kikuchi K., Shimazu M., Kitagawa Y., Aiura K., Kitajima M. A new predictive factor for hepatocellular carcinoma based on two-dimensional electrophoresis of genomic DNA. Oncogene. 2000 Mar 23;19(13):1676–1683. doi: 10.1038/sj.onc.1203459. [DOI] [PubMed] [Google Scholar]
  129. Iwata N., Yamamoto H., Sasaki S., Itoh F., Suzuki H., Kikuchi T., Kaneto H., Iku S., Ozeki I., Karino Y. Frequent hypermethylation of CpG islands and loss of expression of the 14-3-3 sigma gene in human hepatocellular carcinoma. Oncogene. 2000 Nov 2;19(46):5298–5302. doi: 10.1038/sj.onc.1203898. [DOI] [PubMed] [Google Scholar]
  130. Jackson-Grusby L., Beard C., Possemato R., Tudor M., Fambrough D., Csankovszki G., Dausman J., Lee P., Wilson C., Lander E. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet. 2001 Jan;27(1):31–39. doi: 10.1038/83730. [DOI] [PubMed] [Google Scholar]
  131. Jacob R. A., Gretz D. M., Taylor P. C., James S. J., Pogribny I. P., Miller B. J., Henning S. M., Swendseid M. E. Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr. 1998 Jul;128(7):1204–1212. doi: 10.1093/jn/128.7.1204. [DOI] [PubMed] [Google Scholar]
  132. Jaenisch R., Beard C., Lee J., Marahrens Y., Panning B. Mammalian X chromosome inactivation. Novartis Found Symp. 1998;214:200-9; discussion 209-13, 228-32. doi: 10.1002/9780470515501.ch12. [DOI] [PubMed] [Google Scholar]
  133. Jarrard D. F., Bova G. S., Ewing C. M., Pin S. S., Nguyen S. H., Baylin S. B., Cairns P., Sidransky D., Herman J. G., Isaacs W. B. Deletional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer. Genes Chromosomes Cancer. 1997 Jun;19(2):90–96. [PubMed] [Google Scholar]
  134. Jarrard D. F., Kinoshita H., Shi Y., Sandefur C., Hoff D., Meisner L. F., Chang C., Herman J. G., Isaacs W. B., Nassif N. Methylation of the androgen receptor promoter CpG island is associated with loss of androgen receptor expression in prostate cancer cells. Cancer Res. 1998 Dec 1;58(23):5310–5314. [PubMed] [Google Scholar]
  135. Jeanpierre M., Turleau C., Aurias A., Prieur M., Ledeist F., Fischer A., Viegas-Pequignot E. An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum Mol Genet. 1993 Jun;2(6):731–735. doi: 10.1093/hmg/2.6.731. [DOI] [PubMed] [Google Scholar]
  136. Ji W., Hernandez R., Zhang X. Y., Qu G. Z., Frady A., Varela M., Ehrlich M. DNA demethylation and pericentromeric rearrangements of chromosome 1. Mutat Res. 1997 Sep 5;379(1):33–41. doi: 10.1016/s0027-5107(97)00088-2. [DOI] [PubMed] [Google Scholar]
  137. Jirtle R. L. Genomic imprinting and cancer. Exp Cell Res. 1999 Apr 10;248(1):18–24. doi: 10.1006/excr.1999.4453. [DOI] [PubMed] [Google Scholar]
  138. Johnson C. A. Chromatin modification and disease. J Med Genet. 2000 Dec;37(12):905–915. doi: 10.1136/jmg.37.12.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Jones C., Penny L., Mattina T., Yu S., Baker E., Voullaire L., Langdon W. Y., Sutherland G. R., Richards R. I., Tunnacliffe A. Association of a chromosome deletion syndrome with a fragile site within the proto-oncogene CBL2. Nature. 1995 Jul 13;376(6536):145–149. doi: 10.1038/376145a0. [DOI] [PubMed] [Google Scholar]
  140. Jones P. A. The DNA methylation paradox. Trends Genet. 1999 Jan;15(1):34–37. doi: 10.1016/s0168-9525(98)01636-9. [DOI] [PubMed] [Google Scholar]
  141. Jones P. A., Wolkowicz M. J., Rideout W. M., 3rd, Gonzales F. A., Marziasz C. M., Coetzee G. A., Tapscott S. J. De novo methylation of the MyoD1 CpG island during the establishment of immortal cell lines. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6117–6121. doi: 10.1073/pnas.87.16.6117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Joyce J. A., Lam W. K., Catchpoole D. J., Jenks P., Reik W., Maher E. R., Schofield P. N. Imprinting of IGF2 and H19: lack of reciprocity in sporadic Beckwith-Wiedemann syndrome. Hum Mol Genet. 1997 Sep;6(9):1543–1548. doi: 10.1093/hmg/6.9.1543. [DOI] [PubMed] [Google Scholar]
  143. Jähner D., Stuhlmann H., Stewart C. L., Harbers K., Löhler J., Simon I., Jaenisch R. De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature. 1982 Aug 12;298(5875):623–628. doi: 10.1038/298623a0. [DOI] [PubMed] [Google Scholar]
  144. Kafri T., Ariel M., Brandeis M., Shemer R., Urven L., McCarrey J., Cedar H., Razin A. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev. 1992 May;6(5):705–714. doi: 10.1101/gad.6.5.705. [DOI] [PubMed] [Google Scholar]
  145. Kanai Y., Ushijima S., Hui A. M., Ochiai A., Tsuda H., Sakamoto M., Hirohashi S. The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas. Int J Cancer. 1997 May 2;71(3):355–359. doi: 10.1002/(sici)1097-0215(19970502)71:3<355::aid-ijc8>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  146. Kanai Y., Ushijima S., Tsuda H., Sakamoto M., Sugimura T., Hirohashi S. Aberrant DNA methylation on chromosome 16 is an early event in hepatocarcinogenesis. Jpn J Cancer Res. 1996 Dec;87(12):1210–1217. doi: 10.1111/j.1349-7006.1996.tb03135.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Kane M. F., Loda M., Gaida G. M., Lipman J., Mishra R., Goldman H., Jessup J. M., Kolodner R. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997 Mar 1;57(5):808–811. [PubMed] [Google Scholar]
  148. Kantharidis P., El-Osta A., deSilva M., Wall D. M., Hu X. F., Slater A., Nadalin G., Parkin J. D., Zalcberg J. R. Altered methylation of the human MDR1 promoter is associated with acquired multidrug resistance. Clin Cancer Res. 1997 Nov;3(11):2025–2032. [PubMed] [Google Scholar]
  149. Kass S. U., Landsberger N., Wolffe A. P. DNA methylation directs a time-dependent repression of transcription initiation. Curr Biol. 1997 Mar 1;7(3):157–165. doi: 10.1016/s0960-9822(97)70086-1. [DOI] [PubMed] [Google Scholar]
  150. Katzenellenbogen R. A., Baylin S. B., Herman J. G. Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood. 1999 Jun 15;93(12):4347–4353. [PubMed] [Google Scholar]
  151. Kawakami K., Brabender J., Lord R. V., Groshen S., Greenwald B. D., Krasna M. J., Yin J., Fleisher A. S., Abraham J. M., Beer D. G. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst. 2000 Nov 15;92(22):1805–1811. doi: 10.1093/jnci/92.22.1805. [DOI] [PubMed] [Google Scholar]
  152. Kazazian H. H., Jr, Moran J. V. The impact of L1 retrotransposons on the human genome. Nat Genet. 1998 May;19(1):19–24. doi: 10.1038/ng0598-19. [DOI] [PubMed] [Google Scholar]
  153. Kim Y. I. Folate and cancer prevention: a new medical application of folate beyond hyperhomocysteinemia and neural tube defects. Nutr Rev. 1999 Oct;57(10):314–321. doi: 10.1111/j.1753-4887.1999.tb06905.x. [DOI] [PubMed] [Google Scholar]
  154. Kim Y. I., Giuliano A., Hatch K. D., Schneider A., Nour M. A., Dallal G. E., Selhub J., Mason J. B. Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer. 1994 Aug 1;74(3):893–899. doi: 10.1002/1097-0142(19940801)74:3<893::aid-cncr2820740316>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  155. Kim Y. I. Methylenetetrahydrofolate reductase polymorphisms, folate, and cancer risk: a paradigm of gene-nutrient interactions in carcinogenesis. Nutr Rev. 2000 Jul;58(7):205–209. doi: 10.1111/j.1753-4887.2000.tb01863.x. [DOI] [PubMed] [Google Scholar]
  156. Kim Y. I., Pogribny I. P., Basnakian A. G., Miller J. W., Selhub J., James S. J., Mason J. B. Folate deficiency in rats induces DNA strand breaks and hypomethylation within the p53 tumor suppressor gene. Am J Clin Nutr. 1997 Jan;65(1):46–52. doi: 10.1093/ajcn/65.1.46. [DOI] [PubMed] [Google Scholar]
  157. Kissil J. L., Feinstein E., Cohen O., Jones P. A., Tsai Y. C., Knowles M. A., Eydmann M. E., Kimchi A. DAP-kinase loss of expression in various carcinoma and B-cell lymphoma cell lines: possible implications for role as tumor suppressor gene. Oncogene. 1997 Jul 24;15(4):403–407. doi: 10.1038/sj.onc.1201172. [DOI] [PubMed] [Google Scholar]
  158. Knudson A. G., Jr Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971 Apr;68(4):820–823. doi: 10.1073/pnas.68.4.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Kokalj-Vokac N., Almeida A., Viegas-Péquignot E., Jeanpierre M., Malfoy B., Dutrillaux B. Specific induction of uncoiling and recombination by azacytidine in classical satellite-containing constitutive heterochromatin. Cytogenet Cell Genet. 1993;63(1):11–15. doi: 10.1159/000133492. [DOI] [PubMed] [Google Scholar]
  160. Kondo M., Matsuoka S., Uchida K., Osada H., Nagatake M., Takagi K., Harper J. W., Takahashi T., Elledge S. J., Takahashi T. Selective maternal-allele loss in human lung cancers of the maternally expressed p57KIP2 gene at 11p15.5. Oncogene. 1996 Mar 21;12(6):1365–1368. [PubMed] [Google Scholar]
  161. Kondo T., Bobek M. P., Kuick R., Lamb B., Zhu X., Narayan A., Bourc'his D., Viegas-Péquignot E., Ehrlich M., Hanash S. M. Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum Mol Genet. 2000 Mar 1;9(4):597–604. doi: 10.1093/hmg/9.4.597. [DOI] [PubMed] [Google Scholar]
  162. Kubota T., Aradhya S., Macha M., Smith A. C., Surh L. C., Satish J., Verp M. S., Nee H. L., Johnson A., Christan S. L. Analysis of parent of origin specific DNA methylation at SNRPN and PW71 in tissues: implication for prenatal diagnosis. J Med Genet. 1996 Dec;33(12):1011–1014. doi: 10.1136/jmg.33.12.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Kubota T., Sutcliffe J. S., Aradhya S., Gillessen-Kaesbach G., Christian S. L., Horsthemke B., Beaudet A. L., Ledbetter D. H. Validation studies of SNRPN methylation as a diagnostic test for Prader-Willi syndrome. Am J Med Genet. 1996 Dec 2;66(1):77–80. doi: 10.1002/(SICI)1096-8628(19961202)66:1<77::AID-AJMG18>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  164. Kuzmin I., Geil L., Ge H., Bengtsson U., Duh F. M., Stanbridge E. J., Lerman M. I. Analysis of aberrant methylation of the VHL gene by transgenes, monochromosome transfer, and cell fusion. Oncogene. 1999 Oct 7;18(41):5672–5679. doi: 10.1038/sj.onc.1202959. [DOI] [PubMed] [Google Scholar]
  165. Laird P. W., Jaenisch R. The role of DNA methylation in cancer genetic and epigenetics. Annu Rev Genet. 1996;30:441–464. doi: 10.1146/annurev.genet.30.1.441. [DOI] [PubMed] [Google Scholar]
  166. Lee W. H., Morton R. A., Epstein J. I., Brooks J. D., Campbell P. A., Bova G. S., Hsieh W. S., Isaacs W. B., Nelson W. G. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11733–11737. doi: 10.1073/pnas.91.24.11733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Lengauer C., Kinzler K. W., Vogelstein B. DNA methylation and genetic instability in colorectal cancer cells. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2545–2550. doi: 10.1073/pnas.94.6.2545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Leonhardt H., Page A. W., Weier H. U., Bestor T. H. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell. 1992 Nov 27;71(5):865–873. doi: 10.1016/0092-8674(92)90561-p. [DOI] [PubMed] [Google Scholar]
  169. Lethé B., Lucas S., Michaux L., De Smet C., Godelaine D., Serrano A., De Plaen E., Boon T. LAGE-1, a new gene with tumor specificity. Int J Cancer. 1998 Jun 10;76(6):903–908. doi: 10.1002/(sici)1097-0215(19980610)76:6<903::aid-ijc22>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  170. Li E., Bestor T. H., Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992 Jun 12;69(6):915–926. doi: 10.1016/0092-8674(92)90611-f. [DOI] [PubMed] [Google Scholar]
  171. Li Q., Ahuja N., Burger P. C., Issa J. P. Methylation and silencing of the Thrombospondin-1 promoter in human cancer. Oncogene. 1999 May 27;18(21):3284–3289. doi: 10.1038/sj.onc.1202663. [DOI] [PubMed] [Google Scholar]
  172. Li Q., Jedlicka A., Ahuja N., Gibbons M. C., Baylin S. B., Burger P. C., Issa J. P. Concordant methylation of the ER and N33 genes in glioblastoma multiforme. Oncogene. 1998 Jun 18;16(24):3197–3202. doi: 10.1038/sj.onc.1201831. [DOI] [PubMed] [Google Scholar]
  173. Liang G., Robertson K. D., Talmadge C., Sumegi J., Jones P. A. The gene for a novel transmembrane protein containing epidermal growth factor and follistatin domains is frequently hypermethylated in human tumor cells. Cancer Res. 2000 Sep 1;60(17):4907–4912. [PubMed] [Google Scholar]
  174. Litz C. E., Etzell J. Aberrant DNA methylation of genomic regions translocated in myeloid malignancies. Leuk Lymphoma. 1998 Jun;30(1-2):1–9. doi: 10.3109/10428199809050924. [DOI] [PubMed] [Google Scholar]
  175. Litz C. E., Vos J. A., Copenhaver C. M. Aberrant methylation of the major breakpoint cluster region in chronic myeloid leukemia. Blood. 1996 Sep 15;88(6):2241–2249. [PubMed] [Google Scholar]
  176. Lou W., Krill D., Dhir R., Becich M. J., Dong J. T., Frierson H. F., Jr, Isaacs W. B., Isaacs J. T., Gao A. C. Methylation of the CD44 metastasis suppressor gene in human prostate cancer. Cancer Res. 1999 May 15;59(10):2329–2331. [PubMed] [Google Scholar]
  177. Lueders K. K., Fewell J. W., Morozov V. E., Kuff E. L. Selective expression of intracisternal A-particle genes in established mouse plasmacytomas. Mol Cell Biol. 1993 Dec;13(12):7439–7446. doi: 10.1128/mcb.13.12.7439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Lyko F., Ramsahoye B. H., Jaenisch R. DNA methylation in Drosophila melanogaster. Nature. 2000 Nov 30;408(6812):538–540. doi: 10.1038/35046205. [DOI] [PubMed] [Google Scholar]
  179. MacLeod A. R., Szyf M. Expression of antisense to DNA methyltransferase mRNA induces DNA demethylation and inhibits tumorigenesis. J Biol Chem. 1995 Apr 7;270(14):8037–8043. doi: 10.1074/jbc.270.14.8037. [DOI] [PubMed] [Google Scholar]
  180. Maher E. R., Reik W. Beckwith-Wiedemann syndrome: imprinting in clusters revisited. J Clin Invest. 2000 Feb;105(3):247–252. doi: 10.1172/JCI9340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Malik K., Salpekar A., Hancock A., Moorwood K., Jackson S., Charles A., Brown K. W. Identification of differential methylation of the WT1 antisense regulatory region and relaxation of imprinting in Wilms' tumor. Cancer Res. 2000 May 1;60(9):2356–2360. [PubMed] [Google Scholar]
  182. Malinen T., Palotie A., Pakkala S., Peltonen L., Ruutu T., Jansson S. E. Acceleration of chronic myeloid leukemia correlates with calcitonin gene hypermethylation. Blood. 1991 Jun 1;77(11):2435–2440. [PubMed] [Google Scholar]
  183. Maraschio P., Zuffardi O., Dalla Fior T., Tiepolo L. Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J Med Genet. 1988 Mar;25(3):173–180. doi: 10.1136/jmg.25.3.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Marchand M., van Baren N., Weynants P., Brichard V., Dréno B., Tessier M. H., Rankin E., Parmiani G., Arienti F., Humblet Y. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer. 1999 Jan 18;80(2):219–230. doi: 10.1002/(sici)1097-0215(19990118)80:2<219::aid-ijc10>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  185. Marin M., Karis A., Visser P., Grosveld F., Philipsen S. Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation. Cell. 1997 May 16;89(4):619–628. doi: 10.1016/s0092-8674(00)80243-3. [DOI] [PubMed] [Google Scholar]
  186. Martelange V., De Smet C., De Plaen E., Lurquin C., Boon T. Identification on a human sarcoma of two new genes with tumor-specific expression. Cancer Res. 2000 Jul 15;60(14):3848–3855. [PubMed] [Google Scholar]
  187. Matsuo K., Silke J., Georgiev O., Marti P., Giovannini N., Rungger D. An embryonic demethylation mechanism involving binding of transcription factors to replicating DNA. EMBO J. 1998 Mar 2;17(5):1446–1453. doi: 10.1093/emboj/17.5.1446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. McConnell B. B., Vertino P. M. Activation of a caspase-9-mediated apoptotic pathway by subcellular redistribution of the novel caspase recruitment domain protein TMS1. Cancer Res. 2000 Nov 15;60(22):6243–6247. [PubMed] [Google Scholar]
  189. Melki J. R., Vincent P. C., Brown R. D., Clark S. J. Hypermethylation of E-cadherin in leukemia. Blood. 2000 May 15;95(10):3208–3213. [PubMed] [Google Scholar]
  190. Melki J. R., Vincent P. C., Clark S. J. Cancer-specific region of hypermethylation identified within the HIC1 putative tumour suppressor gene in acute myeloid leukaemia. Leukemia. 1999 Jun;13(6):877–883. doi: 10.1038/sj.leu.2401401. [DOI] [PubMed] [Google Scholar]
  191. Merlo A., Herman J. G., Mao L., Lee D. J., Gabrielson E., Burger P. C., Baylin S. B., Sidransky D. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995 Jul;1(7):686–692. doi: 10.1038/nm0795-686. [DOI] [PubMed] [Google Scholar]
  192. Mertens F., Johansson B., Höglund M., Mitelman F. Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms. Cancer Res. 1997 Jul 1;57(13):2765–2780. [PubMed] [Google Scholar]
  193. Michaelis R. C., Velagaleti G. V., Jones C., Pivnick E. K., Phelan M. C., Boyd E., Tarleton J., Wilroy R. S., Tunnacliffe A., Tharapel A. T. Most Jacobsen syndrome deletion breakpoints occur distal to FRA11B. Am J Med Genet. 1998 Mar 19;76(3):222–228. [PubMed] [Google Scholar]
  194. Miki Y., Katagiri T., Kasumi F., Yoshimoto T., Nakamura Y. Mutation analysis in the BRCA2 gene in primary breast cancers. Nat Genet. 1996 Jun;13(2):245–247. doi: 10.1038/ng0696-245. [DOI] [PubMed] [Google Scholar]
  195. Miki Y., Nishisho I., Horii A., Miyoshi Y., Utsunomiya J., Kinzler K. W., Vogelstein B., Nakamura Y. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 1992 Feb 1;52(3):643–645. [PubMed] [Google Scholar]
  196. Millar D. S., Paul C. L., Molloy P. L., Clark S. J. A distinct sequence (ATAAA)n separates methylated and unmethylated domains at the 5'-end of the GSTP1 CpG island. J Biol Chem. 2000 Aug 11;275(32):24893–24899. doi: 10.1074/jbc.M906538199. [DOI] [PubMed] [Google Scholar]
  197. Monk M., Boubelik M., Lehnert S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development. 1987 Mar;99(3):371–382. doi: 10.1242/dev.99.3.371. [DOI] [PubMed] [Google Scholar]
  198. Montagna M., Santacatterina M., Torri A., Menin C., Zullato D., Chieco-Bianchi L., D'Andrea E. Identification of a 3 kb Alu-mediated BRCA1 gene rearrangement in two breast/ovarian cancer families. Oncogene. 1999 Jul 15;18(28):4160–4165. doi: 10.1038/sj.onc.1202754. [DOI] [PubMed] [Google Scholar]
  199. Morse B., Rotherg P. G., South V. J., Spandorfer J. M., Astrin S. M. Insertional mutagenesis of the myc locus by a LINE-1 sequence in a human breast carcinoma. Nature. 1988 May 5;333(6168):87–90. doi: 10.1038/333087a0. [DOI] [PubMed] [Google Scholar]
  200. Motulsky A. G. Nutritional ecogenetics: homocysteine-related arteriosclerotic vascular disease, neural tube defects, and folic acid. Am J Hum Genet. 1996 Jan;58(1):17–20. [PMC free article] [PubMed] [Google Scholar]
  201. Mummaneni P., Walker K. A., Bishop P. L., Turker M. S. Epigenetic gene inactivation induced by a cis-acting methylation center. J Biol Chem. 1995 Jan 13;270(2):788–792. doi: 10.1074/jbc.270.2.788. [DOI] [PubMed] [Google Scholar]
  202. Mummaneni P., Yates P., Simpson J., Rose J., Turker M. S. The primary function of a redundant Sp1 binding site in the mouse aprt gene promoter is to block epigenetic gene inactivation. Nucleic Acids Res. 1998 Nov 15;26(22):5163–5169. doi: 10.1093/nar/26.22.5163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Myöhänen S. K., Baylin S. B., Herman J. G. Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res. 1998 Feb 15;58(4):591–593. [PubMed] [Google Scholar]
  204. Nakagawa H., Chadwick R. B., Peltomaki P., Plass C., Nakamura Y., de La Chapelle A. Loss of imprinting of the insulin-like growth factor II gene occurs by biallelic methylation in a core region of H19-associated CTCF-binding sites in colorectal cancer. Proc Natl Acad Sci U S A. 2000 Dec 19;98(2):591–596. doi: 10.1073/pnas.011528698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Nan X., Cross S., Bird A. Gene silencing by methyl-CpG-binding proteins. Novartis Found Symp. 1998;214:6-16; discussion 16-21, 46-50. doi: 10.1002/9780470515501.ch2. [DOI] [PubMed] [Google Scholar]
  206. Nan X., Ng H. H., Johnson C. A., Laherty C. D., Turner B. M., Eisenman R. N., Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998 May 28;393(6683):386–389. doi: 10.1038/30764. [DOI] [PubMed] [Google Scholar]
  207. Narayan A., Ji W., Zhang X. Y., Marrogi A., Graff J. R., Baylin S. B., Ehrlich M. Hypomethylation of pericentromeric DNA in breast adenocarcinomas. Int J Cancer. 1998 Sep 11;77(6):833–838. doi: 10.1002/(sici)1097-0215(19980911)77:6<833::aid-ijc6>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  208. Nass S. J., Herman J. G., Gabrielson E., Iversen P. W., Parl F. F., Davidson N. E., Graff J. R. Aberrant methylation of the estrogen receptor and E-cadherin 5' CpG islands increases with malignant progression in human breast cancer. Cancer Res. 2000 Aug 15;60(16):4346–4348. [PubMed] [Google Scholar]
  209. Neddermann P., Gallinari P., Lettieri T., Schmid D., Truong O., Hsuan J. J., Wiebauer K., Jiricny J. Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J Biol Chem. 1996 May 31;271(22):12767–12774. doi: 10.1074/jbc.271.22.12767. [DOI] [PubMed] [Google Scholar]
  210. Nelkin B. D., Przepiorka D., Burke P. J., Thomas E. D., Baylin S. B. Abnormal methylation of the calcitonin gene marks progression of chronic myelogenous leukemia. Blood. 1991 Jun 1;77(11):2431–2434. [PubMed] [Google Scholar]
  211. Ng H. H., Bird A. Histone deacetylases: silencers for hire. Trends Biochem Sci. 2000 Mar;25(3):121–126. doi: 10.1016/s0968-0004(00)01551-6. [DOI] [PubMed] [Google Scholar]
  212. Ng H. H., Zhang Y., Hendrich B., Johnson C. A., Turner B. M., Erdjument-Bromage H., Tempst P., Reinberg D., Bird A. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet. 1999 Sep;23(1):58–61. doi: 10.1038/12659. [DOI] [PubMed] [Google Scholar]
  213. Nguyen T. T., Mohrbacher A. F., Tsai Y. C., Groffen J., Heisterkamp N., Nichols P. W., Yu M. C., Lübbert M., Jones P. A. Quantitative measure of c-abl and p15 methylation in chronic myelogenous leukemia: biological implications. Blood. 2000 May 1;95(9):2990–2992. [PubMed] [Google Scholar]
  214. Nicholls R. D., Saitoh S., Horsthemke B. Imprinting in Prader-Willi and Angelman syndromes. Trends Genet. 1998 May;14(5):194–200. doi: 10.1016/s0168-9525(98)01432-2. [DOI] [PubMed] [Google Scholar]
  215. Nowell P. C. The clonal evolution of tumor cell populations. Science. 1976 Oct 1;194(4260):23–28. doi: 10.1126/science.959840. [DOI] [PubMed] [Google Scholar]
  216. Nuovo G. J., Plaia T. W., Belinsky S. A., Baylin S. B., Herman J. G. In situ detection of the hypermethylation-induced inactivation of the p16 gene as an early event in oncogenesis. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12754–12759. doi: 10.1073/pnas.96.22.12754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Nyström-Lahti M., Kristo P., Nicolaides N. C., Chang S. Y., Aaltonen L. A., Moisio A. L., Järvinen H. J., Mecklin J. P., Kinzler K. W., Vogelstein B. Founding mutations and Alu-mediated recombination in hereditary colon cancer. Nat Med. 1995 Nov;1(11):1203–1206. doi: 10.1038/nm1195-1203. [DOI] [PubMed] [Google Scholar]
  218. O'Neill R. J., O'Neill M. J., Graves J. A. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature. 1998 May 7;393(6680):68–72. doi: 10.1038/29985. [DOI] [PubMed] [Google Scholar]
  219. Ogawa O., Becroft D. M., Morison I. M., Eccles M. R., Skeen J. E., Mauger D. C., Reeve A. E. Constitutional relaxation of insulin-like growth factor II gene imprinting associated with Wilms' tumour and gigantism. Nat Genet. 1993 Dec;5(4):408–412. doi: 10.1038/ng1293-408. [DOI] [PubMed] [Google Scholar]
  220. Ogawa O., Eccles M. R., Szeto J., McNoe L. A., Yun K., Maw M. A., Smith P. J., Reeve A. E. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature. 1993 Apr 22;362(6422):749–751. doi: 10.1038/362749a0. [DOI] [PubMed] [Google Scholar]
  221. Ohta T., Gray T. A., Rogan P. K., Buiting K., Gabriel J. M., Saitoh S., Muralidhar B., Bilienska B., Krajewska-Walasek M., Driscoll D. J. Imprinting-mutation mechanisms in Prader-Willi syndrome. Am J Hum Genet. 1999 Feb;64(2):397–413. doi: 10.1086/302233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Okano M., Bell D. W., Haber D. A., Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999 Oct 29;99(3):247–257. doi: 10.1016/s0092-8674(00)81656-6. [DOI] [PubMed] [Google Scholar]
  223. Ottaviano Y. L., Issa J. P., Parl F. F., Smith H. S., Baylin S. B., Davidson N. E. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 1994 May 15;54(10):2552–2555. [PubMed] [Google Scholar]
  224. Palmisano W. A., Divine K. K., Saccomanno G., Gilliland F. D., Baylin S. B., Herman J. G., Belinsky S. A. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 2000 Nov 1;60(21):5954–5958. [PubMed] [Google Scholar]
  225. Panning B., Jaenisch R. DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev. 1996 Aug 15;10(16):1991–2002. doi: 10.1101/gad.10.16.1991. [DOI] [PubMed] [Google Scholar]
  226. Pao M. M., Liang G., Tsai Y. C., Xiong Z., Laird P. W., Jones P. A. DNA methylator and mismatch repair phenotypes are not mutually exclusive in colorectal cancer cell lines. Oncogene. 2000 Feb 17;19(7):943–952. doi: 10.1038/sj.onc.1203414. [DOI] [PubMed] [Google Scholar]
  227. Petronis A., Gottesman I. I., Crow T. J., DeLisi L. E., Klar A. J., Macciardi F., McInnis M. G., McMahon F. J., Paterson A. D., Skuse D. Psychiatric epigenetics: a new focus for the new century. Mol Psychiatry. 2000 Jul;5(4):342–346. doi: 10.1038/sj.mp.4000750. [DOI] [PubMed] [Google Scholar]
  228. Petronis A. The genes for major psychosis: aberrant sequence or regulation? Neuropsychopharmacology. 2000 Jul;23(1):1–12. doi: 10.1016/S0893-133X(00)00127-5. [DOI] [PubMed] [Google Scholar]
  229. Pfeifer G. P., Denissenko M. F. Formation and repair of DNA lesions in the p53 gene: relation to cancer mutations? Environ Mol Mutagen. 1998;31(3):197–205. doi: 10.1002/(sici)1098-2280(1998)31:3<197::aid-em1>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  230. Pfeifer G. P., Denissenko M. F., Tang M. S. PCR-based approaches to adduct analysis. Toxicol Lett. 1998 Dec 28;102-103:447–451. doi: 10.1016/s0378-4274(98)00337-3. [DOI] [PubMed] [Google Scholar]
  231. Pieper R. O., Costello J. F., Kroes R. A., Futscher B. W., Marathi U., Erickson L. C. Direct correlation between methylation status and expression of the human O-6-methylguanine DNA methyltransferase gene. Cancer Commun. 1991 Aug;3(8):241–253. doi: 10.3727/095535491820873092. [DOI] [PubMed] [Google Scholar]
  232. Plass C., Shibata H., Kalcheva I., Mullins L., Kotelevtseva N., Mullins J., Kato R., Sasaki H., Hirotsune S., Okazaki Y. Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS-M. Nat Genet. 1996 Sep;14(1):106–109. doi: 10.1038/ng0996-106. [DOI] [PubMed] [Google Scholar]
  233. Plass C., Yu F., Yu L., Strout M. P., El-Rifai W., Elonen E., Knuutila S., Marcucci G., Young D. C., Held W. A. Restriction landmark genome scanning for aberrant methylation in primary refractory and relapsed acute myeloid leukemia; involvement of the WIT-1 gene. Oncogene. 1999 May 20;18(20):3159–3165. doi: 10.1038/sj.onc.1202651. [DOI] [PubMed] [Google Scholar]
  234. Pogribny I. P., Basnakian A. G., Miller B. J., Lopatina N. G., Poirier L. A., James S. J. Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Res. 1995 May 1;55(9):1894–1901. [PubMed] [Google Scholar]
  235. Pulford D. J., Falls J. G., Killian J. K., Jirtle R. L. Polymorphisms, genomic imprinting and cancer susceptibility. Mutat Res. 1999 Jan;436(1):59–67. doi: 10.1016/s1383-5742(98)00018-0. [DOI] [PubMed] [Google Scholar]
  236. Qian X., von Wronski M. A., Brent T. P. Localization of methylation sites in the human O6-methylguanine-DNA methyltransferase promoter: correlation with gene suppression. Carcinogenesis. 1995 Jun;16(6):1385–1390. doi: 10.1093/carcin/16.6.1385. [DOI] [PubMed] [Google Scholar]
  237. Qu G. Z., Grundy P. E., Narayan A., Ehrlich M. Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet Cytogenet. 1999 Feb;109(1):34–39. doi: 10.1016/s0165-4608(98)00143-5. [DOI] [PubMed] [Google Scholar]
  238. Qu G., Dubeau L., Narayan A., Yu M. C., Ehrlich M. Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential. Mutat Res. 1999 Jan 25;423(1-2):91–101. doi: 10.1016/s0027-5107(98)00229-2. [DOI] [PubMed] [Google Scholar]
  239. Rainier S., Johnson L. A., Dobry C. J., Ping A. J., Grundy P. E., Feinberg A. P. Relaxation of imprinted genes in human cancer. Nature. 1993 Apr 22;362(6422):747–749. doi: 10.1038/362747a0. [DOI] [PubMed] [Google Scholar]
  240. Ramchandani S., Bhattacharya S. K., Cervoni N., Szyf M. DNA methylation is a reversible biological signal. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6107–6112. doi: 10.1073/pnas.96.11.6107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Ramsahoye B. H., Biniszkiewicz D., Lyko F., Clark V., Bird A. P., Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5237–5242. doi: 10.1073/pnas.97.10.5237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  242. Reik W., Brown K. W., Schneid H., Le Bouc Y., Bickmore W., Maher E. R. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum Mol Genet. 1995 Dec;4(12):2379–2385. doi: 10.1093/hmg/4.12.2379. [DOI] [PubMed] [Google Scholar]
  243. Reik W., Murrell A. Genomic imprinting. Silence across the border. Nature. 2000 May 25;405(6785):408–409. doi: 10.1038/35013178. [DOI] [PubMed] [Google Scholar]
  244. Rhee I., Jair K. W., Yen R. W., Lengauer C., Herman J. G., Kinzler K. W., Vogelstein B., Baylin S. B., Schuebel K. E. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature. 2000 Apr 27;404(6781):1003–1007. doi: 10.1038/35010000. [DOI] [PubMed] [Google Scholar]
  245. Rice J. C., Futscher B. W. Transcriptional repression of BRCA1 by aberrant cytosine methylation, histone hypoacetylation and chromatin condensation of the BRCA1 promoter. Nucleic Acids Res. 2000 Sep 1;28(17):3233–3239. doi: 10.1093/nar/28.17.3233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Rice J. C., Massey-Brown K. S., Futscher B. W. Aberrant methylation of the BRCA1 CpG island promoter is associated with decreased BRCA1 mRNA in sporadic breast cancer cells. Oncogene. 1998 Oct 8;17(14):1807–1812. doi: 10.1038/sj.onc.1202086. [DOI] [PubMed] [Google Scholar]
  247. Rice J. C., Ozcelik H., Maxeiner P., Andrulis I., Futscher B. W. Methylation of the BRCA1 promoter is associated with decreased BRCA1 mRNA levels in clinical breast cancer specimens. Carcinogenesis. 2000 Sep;21(9):1761–1765. doi: 10.1093/carcin/21.9.1761. [DOI] [PubMed] [Google Scholar]
  248. Riggs A. D., Jones P. A. 5-methylcytosine, gene regulation, and cancer. Adv Cancer Res. 1983;40:1–30. doi: 10.1016/s0065-230x(08)60678-8. [DOI] [PubMed] [Google Scholar]
  249. Robertson K. D., Ait-Si-Ali S., Yokochi T., Wade P. A., Jones P. L., Wolffe A. P. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet. 2000 Jul;25(3):338–342. doi: 10.1038/77124. [DOI] [PubMed] [Google Scholar]
  250. Robertson K. D., Jones P. A. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol Cell Biol. 1998 Nov;18(11):6457–6473. doi: 10.1128/mcb.18.11.6457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Robertson K. D., Wolffe A. P. DNA methylation in health and disease. Nat Rev Genet. 2000 Oct;1(1):11–19. doi: 10.1038/35049533. [DOI] [PubMed] [Google Scholar]
  252. Rose J. A., Yates P. A., Simpson J., Tischfield J. A., Stambrook P. J., Turker M. S. Biallelic methylation and silencing of mouse Aprt in normal kidney cells. Cancer Res. 2000 Jul 1;60(13):3404–3408. [PubMed] [Google Scholar]
  253. Rountree M. R., Bachman K. E., Baylin S. B. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet. 2000 Jul;25(3):269–277. doi: 10.1038/77023. [DOI] [PubMed] [Google Scholar]
  254. Saito Y., Takazawa H., Uzawa K., Tanzawa H., Sato K. Reduced expression of E-cadherin in oral squamous cell carcinoma: relationship with DNA methylation of 5' CpG island. Int J Oncol. 1998 Feb;12(2):293–298. doi: 10.3892/ijo.12.2.293. [DOI] [PubMed] [Google Scholar]
  255. Sakai T., Toguchida J., Ohtani N., Yandell D. W., Rapaport J. M., Dryja T. P. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet. 1991 May;48(5):880–888. [PMC free article] [PubMed] [Google Scholar]
  256. Salem C. E., Markl I. D., Bender C. M., Gonzales F. A., Jones P. A., Liang G. PAX6 methylation and ectopic expression in human tumor cells. Int J Cancer. 2000 Jul 15;87(2):179–185. doi: 10.1002/1097-0215(20000715)87:2<179::aid-ijc4>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  257. Salvesen H. B., MacDonald N., Ryan A., Jacobs I. J., Lynch E. D., Akslen L. A., Das S. PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer. 2001 Jan 1;91(1):22–26. doi: 10.1002/1097-0215(20010101)91:1<22::aid-ijc1002>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  258. Sassaman D. M., Dombroski B. A., Moran J. V., Kimberland M. L., Naas T. P., DeBerardinis R. J., Gabriel A., Swergold G. D., Kazazian H. H., Jr Many human L1 elements are capable of retrotransposition. Nat Genet. 1997 May;16(1):37–43. doi: 10.1038/ng0597-37. [DOI] [PubMed] [Google Scholar]
  259. Schmutte C., Yang A. S., Beart R. W., Jones P. A. Base excision repair of U:G mismatches at a mutational hotspot in the p53 gene is more efficient than base excision repair of T:G mismatches in extracts of human colon tumors. Cancer Res. 1995 Sep 1;55(17):3742–3746. [PubMed] [Google Scholar]
  260. Schutte M., Hruban R. H., Geradts J., Maynard R., Hilgers W., Rabindran S. K., Moskaluk C. A., Hahn S. A., Schwarte-Waldhoff I., Schmiegel W. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res. 1997 Aug 1;57(15):3126–3130. [PubMed] [Google Scholar]
  261. Shen J. C., Rideout W. M., 3rd, Jones P. A. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res. 1994 Mar 25;22(6):972–976. doi: 10.1093/nar/22.6.972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Shibata D., Peinado M. A., Ionov Y., Malkhosyan S., Perucho M. Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nat Genet. 1994 Mar;6(3):273–281. doi: 10.1038/ng0394-273. [DOI] [PubMed] [Google Scholar]
  263. Silva A. J., White R. Inheritance of allelic blueprints for methylation patterns. Cell. 1988 Jul 15;54(2):145–152. doi: 10.1016/0092-8674(88)90546-6. [DOI] [PubMed] [Google Scholar]
  264. Simpkins S. B., Bocker T., Swisher E. M., Mutch D. G., Gersell D. J., Kovatich A. J., Palazzo J. P., Fishel R., Goodfellow P. J. MLH1 promoter methylation and gene silencing is the primary cause of microsatellite instability in sporadic endometrial cancers. Hum Mol Genet. 1999 Apr;8(4):661–666. doi: 10.1093/hmg/8.4.661. [DOI] [PubMed] [Google Scholar]
  265. Simpson D. J., Hibberts N. A., McNicol A. M., Clayton R. N., Farrell W. E. Loss of pRb expression in pituitary adenomas is associated with methylation of the RB1 CpG island. Cancer Res. 2000 Mar 1;60(5):1211–1216. [PubMed] [Google Scholar]
  266. Singer M. F., Krek V., McMillan J. P., Swergold G. D., Thayer R. E. LINE-1: a human transposable element. Gene. 1993 Dec 15;135(1-2):183–188. doi: 10.1016/0378-1119(93)90064-a. [DOI] [PubMed] [Google Scholar]
  267. Slatter R. E., Elliott M., Welham K., Carrera M., Schofield P. N., Barton D. E., Maher E. R. Mosaic uniparental disomy in Beckwith-Wiedemann syndrome. J Med Genet. 1994 Oct;31(10):749–753. doi: 10.1136/jmg.31.10.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  268. Smiraglia D. J., Frühwald M. C., Costello J. F., McCormick S. P., Dai Z., Peltomäki P., O'Dorisio M. S., Cavenee W. K., Plass C. A new tool for the rapid cloning of amplified and hypermethylated human DNA sequences from restriction landmark genome scanning gels. Genomics. 1999 Jun 15;58(3):254–262. doi: 10.1006/geno.1999.5840. [DOI] [PubMed] [Google Scholar]
  269. Smith L. E., Denissenko M. F., Bennett W. P., Li H., Amin S., Tang M., Pfeifer G. P. Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons. J Natl Cancer Inst. 2000 May 17;92(10):803–811. doi: 10.1093/jnci/92.10.803. [DOI] [PubMed] [Google Scholar]
  270. Soares J., Pinto A. E., Cunha C. V., André S., Barão I., Sousa J. M., Cravo M. Global DNA hypomethylation in breast carcinoma: correlation with prognostic factors and tumor progression. Cancer. 1999 Jan 1;85(1):112–118. [PubMed] [Google Scholar]
  271. Steenman M. J., Rainier S., Dobry C. J., Grundy P., Horon I. L., Feinberg A. P. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nat Genet. 1994 Jul;7(3):433–439. doi: 10.1038/ng0794-433. [DOI] [PubMed] [Google Scholar]
  272. Stern L. L., Mason J. B., Selhub J., Choi S. W. Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiol Biomarkers Prev. 2000 Aug;9(8):849–853. [PubMed] [Google Scholar]
  273. Stirzaker C., Millar D. S., Paul C. L., Warnecke P. M., Harrison J., Vincent P. C., Frommer M., Clark S. J. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res. 1997 Jun 1;57(11):2229–2237. [PubMed] [Google Scholar]
  274. Suzuki H., Itoh F., Toyota M., Kikuchi T., Kakiuchi H., Imai K. Inactivation of the 14-3-3 sigma gene is associated with 5' CpG island hypermethylation in human cancers. Cancer Res. 2000 Aug 15;60(16):4353–4357. [PubMed] [Google Scholar]
  275. Szabó P., Tang S. H., Rentsendorj A., Pfeifer G. P., Mann J. R. Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr Biol. 2000 May 18;10(10):607–610. doi: 10.1016/s0960-9822(00)00489-9. [DOI] [PubMed] [Google Scholar]
  276. Tanaka H., Shimada Y., Harada H., Shinoda M., Hatooka S., Imamura M., Ishizaki K. Methylation of the 5' CpG island of the FHIT gene is closely associated with transcriptional inactivation in esophageal squamous cell carcinomas. Cancer Res. 1998 Aug 1;58(15):3429–3434. [PubMed] [Google Scholar]
  277. Tang M. S., Zheng J. B., Denissenko M. F., Pfeifer G. P., Zheng Y. Use of UvrABC nuclease to quantify benzo[a]pyrene diol epoxide-DNA adduct formation at methylated versus unmethylated CpG sites in the p53 gene. Carcinogenesis. 1999 Jun;20(6):1085–1089. doi: 10.1093/carcin/20.6.1085. [DOI] [PubMed] [Google Scholar]
  278. Tang X., Khuri F. R., Lee J. J., Kemp B. L., Liu D., Hong W. K., Mao L. Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. J Natl Cancer Inst. 2000 Sep 20;92(18):1511–1516. doi: 10.1093/jnci/92.18.1511. [DOI] [PubMed] [Google Scholar]
  279. Tate P. H., Bird A. P. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev. 1993 Apr;3(2):226–231. doi: 10.1016/0959-437x(93)90027-m. [DOI] [PubMed] [Google Scholar]
  280. Teitz T., Wei T., Valentine M. B., Vanin E. F., Grenet J., Valentine V. A., Behm F. G., Look A. T., Lahti J. M., Kidd V. J. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med. 2000 May;6(5):529–535. doi: 10.1038/75007. [DOI] [PubMed] [Google Scholar]
  281. Thayer R. E., Singer M. F., Fanning T. G. Undermethylation of specific LINE-1 sequences in human cells producing a LINE-1-encoded protein. Gene. 1993 Nov 15;133(2):273–277. doi: 10.1016/0378-1119(93)90651-i. [DOI] [PubMed] [Google Scholar]
  282. Thurner B., Haendle I., Röder C., Dieckmann D., Keikavoussi P., Jonuleit H., Bender A., Maczek C., Schreiner D., von den Driesch P. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med. 1999 Dec 6;190(11):1669–1678. doi: 10.1084/jem.190.11.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  283. Toyota M., Ahuja N., Ohe-Toyota M., Herman J. G., Baylin S. B., Issa J. P. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8681–8686. doi: 10.1073/pnas.96.15.8681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  284. Toyota M., Ahuja N., Suzuki H., Itoh F., Ohe-Toyota M., Imai K., Baylin S. B., Issa J. P. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res. 1999 Nov 1;59(21):5438–5442. [PubMed] [Google Scholar]
  285. Toyota M., Ho C., Ahuja N., Jair K. W., Li Q., Ohe-Toyota M., Baylin S. B., Issa J. P. Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res. 1999 May 15;59(10):2307–2312. [PubMed] [Google Scholar]
  286. Toyota M., Ho C., Ohe-Toyota M., Baylin S. B., Issa J. P. Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5' CpG island in human tumors. Cancer Res. 1999 Sep 15;59(18):4535–4541. [PubMed] [Google Scholar]
  287. Toyota M., Issa J. P. CpG island methylator phenotypes in aging and cancer. Semin Cancer Biol. 1999 Oct;9(5):349–357. doi: 10.1006/scbi.1999.0135. [DOI] [PubMed] [Google Scholar]
  288. Toyota M., Ohe-Toyota M., Ahuja N., Issa J. P. Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):710–715. doi: 10.1073/pnas.97.2.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  289. Toyota M., Shen L., Ohe-Toyota M., Hamilton S. R., Sinicrope F. A., Issa J. P. Aberrant methylation of the Cyclooxygenase 2 CpG island in colorectal tumors. Cancer Res. 2000 Aug 1;60(15):4044–4048. [PubMed] [Google Scholar]
  290. Tremblay K. D., Saam J. R., Ingram R. S., Tilghman S. M., Bartolomei M. S. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat Genet. 1995 Apr;9(4):407–413. doi: 10.1038/ng0495-407. [DOI] [PubMed] [Google Scholar]
  291. Tsuchiya T., Tamura G., Sato K., Endoh Y., Sakata K., Jin Z., Motoyama T., Usuba O., Kimura W., Nishizuka S. Distinct methylation patterns of two APC gene promoters in normal and cancerous gastric epithelia. Oncogene. 2000 Jul 27;19(32):3642–3646. doi: 10.1038/sj.onc.1203704. [DOI] [PubMed] [Google Scholar]
  292. Tuck-Muller C. M., Narayan A., Tsien F., Smeets D. F., Sawyer J., Fiala E. S., Sohn O. S., Ehrlich M. DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet Cell Genet. 2000;89(1-2):121–128. doi: 10.1159/000015590. [DOI] [PubMed] [Google Scholar]
  293. Tycko B. DNA methylation in genomic imprinting. Mutat Res. 1997 Apr;386(2):131–140. doi: 10.1016/s1383-5742(96)00049-x. [DOI] [PubMed] [Google Scholar]
  294. Tycko B. Epigenetic gene silencing in cancer. J Clin Invest. 2000 Feb;105(4):401–407. doi: 10.1172/JCI9462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  295. Ushijima T., Morimura K., Hosoya Y., Okonogi H., Tatematsu M., Sugimura T., Nagao M. Establishment of methylation-sensitive-representational difference analysis and isolation of hypo- and hypermethylated genomic fragments in mouse liver tumors. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2284–2289. doi: 10.1073/pnas.94.6.2284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  296. Vachtenheim J., Horáková I., Novotná H. Hypomethylation of CCGG sites in the 3' region of H-ras protooncogene is frequent and is associated with H-ras allele loss in non-small cell lung cancer. Cancer Res. 1994 Mar 1;54(5):1145–1148. [PubMed] [Google Scholar]
  297. Van den Veyver I. B., Zoghbi H. Y. Methyl-CpG-binding protein 2 mutations in Rett syndrome. Curr Opin Genet Dev. 2000 Jun;10(3):275–279. doi: 10.1016/s0959-437x(00)00083-6. [DOI] [PubMed] [Google Scholar]
  298. Venter J. C., Adams M. D., Myers E. W., Li P. W., Mural R. J., Sutton G. G., Smith H. O., Yandell M., Evans C. A., Holt R. A. The sequence of the human genome. Science. 2001 Feb 16;291(5507):1304–1351. doi: 10.1126/science.1058040. [DOI] [PubMed] [Google Scholar]
  299. Vertino P. M., Yen R. W., Gao J., Baylin S. B. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol. 1996 Aug;16(8):4555–4565. doi: 10.1128/mcb.16.8.4555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  300. Virmani A. K., Rathi A., Zöchbauer-Müller S., Sacchi N., Fukuyama Y., Bryant D., Maitra A., Heda S., Fong K. M., Thunnissen F. Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. J Natl Cancer Inst. 2000 Aug 16;92(16):1303–1307. doi: 10.1093/jnci/92.16.1303. [DOI] [PubMed] [Google Scholar]
  301. Wade P. A., Gegonne A., Jones P. L., Ballestar E., Aubry F., Wolffe A. P. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet. 1999 Sep;23(1):62–66. doi: 10.1038/12664. [DOI] [PubMed] [Google Scholar]
  302. Wales M. M., Biel M. A., el Deiry W., Nelkin B. D., Issa J. P., Cavenee W. K., Kuerbitz S. J., Baylin S. B. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med. 1995 Jun;1(6):570–577. doi: 10.1038/nm0695-570. [DOI] [PubMed] [Google Scholar]
  303. Walsh C. P., Bestor T. H. Cytosine methylation and mammalian development. Genes Dev. 1999 Jan 1;13(1):26–34. doi: 10.1101/gad.13.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  304. Wan M., Lee S. S., Zhang X., Houwink-Manville I., Song H. R., Amir R. E., Budden S., Naidu S., Pereira J. L., Lo I. F. Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet. 1999 Dec;65(6):1520–1529. doi: 10.1086/302690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  305. Watts G. S., Pieper R. O., Costello J. F., Peng Y. M., Dalton W. S., Futscher B. W. Methylation of discrete regions of the O6-methylguanine DNA methyltransferase (MGMT) CpG island is associated with heterochromatinization of the MGMT transcription start site and silencing of the gene. Mol Cell Biol. 1997 Sep;17(9):5612–5619. doi: 10.1128/mcb.17.9.5612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  306. Webb T., Latif F. Rett syndrome and the MECP2 gene. J Med Genet. 2001 Apr;38(4):217–223. doi: 10.1136/jmg.38.4.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  307. Widschwendter M., Berger J., Hermann M., Müller H. M., Amberger A., Zeschnigk M., Widschwendter A., Abendstein B., Zeimet A. G., Daxenbichler G. Methylation and silencing of the retinoic acid receptor-beta2 gene in breast cancer. J Natl Cancer Inst. 2000 May 17;92(10):826–832. doi: 10.1093/jnci/92.10.826. [DOI] [PubMed] [Google Scholar]
  308. Wijmenga C., van den Heuvel L. P., Strengman E., Luyten J. A., van der Burgt I. J., de Groot R., Smeets D. F., Draaisma J. M., van Dongen J. J., De Abreu R. A. Localization of the ICF syndrome to chromosome 20 by homozygosity mapping. Am J Hum Genet. 1998 Sep;63(3):803–809. doi: 10.1086/302021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  309. Woodcock D. M., Lawler C. B., Linsenmeyer M. E., Doherty J. P., Warren W. D. Asymmetric methylation in the hypermethylated CpG promoter region of the human L1 retrotransposon. J Biol Chem. 1997 Mar 21;272(12):7810–7816. doi: 10.1074/jbc.272.12.7810. [DOI] [PubMed] [Google Scholar]
  310. Worm J., Bartkova J., Kirkin A. F., Straten P., Zeuthen J., Bartek J., Guldberg P. Aberrant p27Kip1 promoter methylation in malignant melanoma. Oncogene. 2000 Oct 19;19(44):5111–5115. doi: 10.1038/sj.onc.1203891. [DOI] [PubMed] [Google Scholar]
  311. Wu J., Issa J. P., Herman J., Bassett D. E., Jr, Nelkin B. D., Baylin S. B. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8891–8895. doi: 10.1073/pnas.90.19.8891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  312. Wutz A., Jaenisch R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell. 2000 Apr;5(4):695–705. doi: 10.1016/s1097-2765(00)80248-8. [DOI] [PubMed] [Google Scholar]
  313. Xie S., Wang Z., Okano M., Nogami M., Li Y., He W. W., Okumura K., Li E. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene. 1999 Aug 5;236(1):87–95. doi: 10.1016/s0378-1119(99)00252-8. [DOI] [PubMed] [Google Scholar]
  314. Xu G. L., Bestor T. H., Bourc'his D., Hsieh C. L., Tommerup N., Bugge M., Hulten M., Qu X., Russo J. J., Viegas-Péquignot E. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature. 1999 Nov 11;402(6758):187–191. doi: 10.1038/46052. [DOI] [PubMed] [Google Scholar]
  315. Yanagisawa Y., Akiyama Y., Iida S., Ito E., Nomizu T., Sugihara K., Yuasa Y., Maruyama K. Methylation of the hMLH1 promoter in familial gastric cancer with microsatellite instability. Int J Cancer. 2000 Jan 1;85(1):50–53. doi: 10.1002/(sici)1097-0215(20000101)85:1<50::aid-ijc9>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  316. Yoshikawa H., de la Monte S., Nagai H., Wands J. R., Matsubara K., Fujiyama A. Chromosomal assignment of human genomic NotI restriction fragments in a two-dimensional electrophoresis profile. Genomics. 1996 Jan 1;31(1):28–35. doi: 10.1006/geno.1996.0005. [DOI] [PubMed] [Google Scholar]
  317. Yoshiura K., Kanai Y., Ochiai A., Shimoyama Y., Sugimura T., Hirohashi S. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7416–7419. doi: 10.1073/pnas.92.16.7416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. Yu Y., Xu F., Peng H., Fang X., Zhao S., Li Y., Cuevas B., Kuo W. L., Gray J. W., Siciliano M. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):214–219. doi: 10.1073/pnas.96.1.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  319. Zardo G., Caiafa P. The unmethylated state of CpG islands in mouse fibroblasts depends on the poly(ADP-ribosyl)ation process. J Biol Chem. 1998 Jun 26;273(26):16517–16520. doi: 10.1074/jbc.273.26.16517. [DOI] [PubMed] [Google Scholar]
  320. Zardo G., D'Erme M., Reale A., Strom R., Perilli M., Caiafa P. Does poly(ADP-ribosyl)ation regulate the DNA methylation pattern? Biochemistry. 1997 Jul 1;36(26):7937–7943. doi: 10.1021/bi970241s. [DOI] [PubMed] [Google Scholar]
  321. Zardo G., Marenzi S., Caiafa P. H1 histone as a trans-acting factor involved in protecting genomic DNA from full methylation. Biol Chem. 1998 Jun;379(6):647–654. [PubMed] [Google Scholar]
  322. Zardo G., Marenzi S., Perilli M., Caiafa P. Inhibition of poly(ADP-ribosyl)ation introduces an anomalous methylation pattern in transfected foreign DNA. FASEB J. 1999 Sep;13(12):1518–1522. doi: 10.1096/fasebj.13.12.1518. [DOI] [PubMed] [Google Scholar]
  323. Zeschnigk M., Schmitz B., Dittrich B., Buiting K., Horsthemke B., Doerfler W. Imprinted segments in the human genome: different DNA methylation patterns in the Prader-Willi/Angelman syndrome region as determined by the genomic sequencing method. Hum Mol Genet. 1997 Mar;6(3):387–395. doi: 10.1093/hmg/6.3.387. [DOI] [PubMed] [Google Scholar]
  324. Zheng S., Chen P., McMillan A., Lafuente A., Lafuente M. J., Ballesta A., Trias M., Wiencke J. K. Correlations of partial and extensive methylation at the p14(ARF) locus with reduced mRNA expression in colorectal cancer cell lines and clinicopathological features in primary tumors. Carcinogenesis. 2000 Nov;21(11):2057–2064. doi: 10.1093/carcin/21.11.2057. [DOI] [PubMed] [Google Scholar]
  325. van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991 Dec 13;254(5038):1643–1647. doi: 10.1126/science.1840703. [DOI] [PubMed] [Google Scholar]
  326. von Wronski M. A., Harris L. C., Tano K., Mitra S., Bigner D. D., Brent T. P. Cytosine methylation and suppression of O6-methylguanine-DNA methyltransferase expression in human rhabdomyosarcoma cell lines and xenografts. Oncol Res. 1992;4(4-5):167–174. [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES