Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Aug;179(16):5030–5036. doi: 10.1128/jb.179.16.5030-5036.1997

Evidence that part of a centromeric DNA region induces pseudohyphal growth in a dimorphic yeast, Candida maltosa.

T Nakazawa 1, T Motoyama 1, H Horiuchi 1, A Ohta 1, M Takagi 1
PMCID: PMC179359  PMID: 9260943

Abstract

We observed that a YCp-type vector having the centromeric DNA (CEN) sequence previously isolated from the genome, but not a YRp-type vector lacking the CEN sequence, induced pseudohyphal growth in a dimorphic fungi, Candida maltosa, which had been shown to be closely related to Candida albicans by phylogenetic analysis. Deletion analysis of the CEN sequence revealed that the intact CEN sequence was not required for the induction, but part of it, having partial centromeric activity, was enough for the induction. By screening the gene library of this yeast for the sequences which induced pseudohyphal growth, we isolated three different DNA fragments which also had part of the centromere-like sequence. Partial centromeric activity of these fragments was confirmed by three criteria: low copy number and high stability of the plasmids carrying these fragments and rearrangement at high frequency of the plasmid DNA with one of these fragments plus the CEN sequence. Furthermore, when the GGTAGCG sequence commonly found in one copy in each of these four sequences was mutated in the CEN sequence by site-directed mutagenesis, both partial centromeric activity and pseudohyphal growth-inducing activity of the CEN sequence were lost. These results indicated that part of CEN region with partial centromeric activity induces pseudohyphal growth in C. maltosa. It is suggested that some cellular components which interact with the sequence containing GGTAGCG required for centromeric activity are involved in the regulation of the transition between yeast forms and pseudohyphal forms of the cells.

Full Text

The Full Text of this article is available as a PDF (590.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey D. A., Feldmann P. J., Bovey M., Gow N. A., Brown A. J. The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J Bacteriol. 1996 Sep;178(18):5353–5360. doi: 10.1128/jb.178.18.5353-5360.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blacketer M. J., Koehler C. M., Coats S. G., Myers A. M., Madaule P. Regulation of dimorphism in Saccharomyces cerevisiae: involvement of the novel protein kinase homolog Elm1p and protein phosphatase 2A. Mol Cell Biol. 1993 Sep;13(9):5567–5581. doi: 10.1128/mcb.13.9.5567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blacketer M. J., Madaule P., Myers A. M. Mutational analysis of morphologic differentiation in Saccharomyces cerevisiae. Genetics. 1995 Aug;140(4):1259–1275. doi: 10.1093/genetics/140.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cai M., Davis R. W. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell. 1990 May 4;61(3):437–446. doi: 10.1016/0092-8674(90)90525-j. [DOI] [PubMed] [Google Scholar]
  5. Clarke L., Amstutz H., Fishel B., Carbon J. Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8253–8257. doi: 10.1073/pnas.83.21.8253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clarke L., Carbon J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature. 1980 Oct 9;287(5782):504–509. doi: 10.1038/287504a0. [DOI] [PubMed] [Google Scholar]
  7. Clarke L. Centromeres of budding and fission yeasts. Trends Genet. 1990 May;6(5):150–154. doi: 10.1016/0168-9525(90)90149-z. [DOI] [PubMed] [Google Scholar]
  8. Eide D., Guarente L. Increased dosage of a transcriptional activator gene enhances iron-limited growth of Saccharomyces cerevisiae. J Gen Microbiol. 1992 Feb;138(2):347–354. doi: 10.1099/00221287-138-2-347. [DOI] [PubMed] [Google Scholar]
  9. Estruch F., Carlson M. Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defective in the SNF1 protein kinase. Nucleic Acids Res. 1990 Dec 11;18(23):6959–6964. doi: 10.1093/nar/18.23.6959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fitzgerald-Hayes M. Yeast centromeres. Yeast. 1987 Sep;3(3):187–200. doi: 10.1002/yea.320030306. [DOI] [PubMed] [Google Scholar]
  11. Fleig U., Beinhauer J. D., Hegemann J. H. Functional selection for the centromere DNA from yeast chromosome VIII. Nucleic Acids Res. 1995 Mar 25;23(6):922–924. doi: 10.1093/nar/23.6.922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fournier P., Abbas A., Chasles M., Kudla B., Ogrydziak D. M., Yaver D., Xuan J. W., Peito A., Ribet A. M., Feynerol C. Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4912–4916. doi: 10.1073/pnas.90.11.4912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Futcher B., Carbon J. Toxic effects of excess cloned centromeres. Mol Cell Biol. 1986 Jun;6(6):2213–2222. doi: 10.1128/mcb.6.6.2213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gavrias V., Andrianopoulos A., Gimeno C. J., Timberlake W. E. Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol Microbiol. 1996 Mar;19(6):1255–1263. doi: 10.1111/j.1365-2958.1996.tb02470.x. [DOI] [PubMed] [Google Scholar]
  15. Gimeno C. J., Fink G. R. Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol. 1994 Mar;14(3):2100–2112. doi: 10.1128/mcb.14.3.2100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gimeno C. J., Ljungdahl P. O., Styles C. A., Fink G. R. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell. 1992 Mar 20;68(6):1077–1090. doi: 10.1016/0092-8674(92)90079-r. [DOI] [PubMed] [Google Scholar]
  17. Heus J. J., Zonneveld B. J., Steensma H. Y., Van den Berg J. A. Centromeric DNA of Kluyveromyces lactis. Curr Genet. 1990 Dec;18(6):517–522. doi: 10.1007/BF00327022. [DOI] [PubMed] [Google Scholar]
  18. Heus J. J., Zonneveld B. J., Steensma H. Y., Van den Berg J. A. Mutational analysis of centromeric DNA elements of Kluyveromyces lactis and their role in determining the species specificity of the highly homologous centromeres from K. lactis and Saccharomyces cerevisiae. Mol Gen Genet. 1994 May 10;243(3):325–333. doi: 10.1007/BF00301068. [DOI] [PubMed] [Google Scholar]
  19. Heus J. J., Zonneveld B. J., de Steensma H. Y., van den Berg J. A. The consensus sequence of Kluyveromyces lactis centromeres shows homology to functional centromeric DNA from Saccharomyces cerevisiae. Mol Gen Genet. 1993 Jan;236(2-3):355–362. doi: 10.1007/BF00277133. [DOI] [PubMed] [Google Scholar]
  20. Hieter P., Pridmore D., Hegemann J. H., Thomas M., Davis R. W., Philippsen P. Functional selection and analysis of yeast centromeric DNA. Cell. 1985 Oct;42(3):913–921. doi: 10.1016/0092-8674(85)90287-9. [DOI] [PubMed] [Google Scholar]
  21. Hikiji T., Ohkuma M., Takagi M., Yano K. An improved host-vector system for Candida maltosa using a gene isolated from its genome that complements the his5 mutation of Saccharomyces cerevisiae. Curr Genet. 1989 Oct;16(4):261–266. doi: 10.1007/BF00422112. [DOI] [PubMed] [Google Scholar]
  22. Kawai S., Hikiji T., Murao S., Takagi M., Yano K. Isolation and sequencing of a gene, C-ADE1, and its use for a host-vector system in Candida maltosa with two genetic markers. Agric Biol Chem. 1991 Jan;55(1):59–65. [PubMed] [Google Scholar]
  23. Kron S. J., Styles C. A., Fink G. R. Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Mol Biol Cell. 1994 Sep;5(9):1003–1022. doi: 10.1091/mbc.5.9.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Köhler J. R., Fink G. R. Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13223–13228. doi: 10.1073/pnas.93.23.13223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lambrechts M. G., Bauer F. F., Marmur J., Pretorius I. S. Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8419–8424. doi: 10.1073/pnas.93.16.8419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Leberer E., Harcus D., Broadbent I. D., Clark K. L., Dignard D., Ziegelbauer K., Schmidt A., Gow N. A., Brown A. J., Thomas D. Y. Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13217–13222. doi: 10.1073/pnas.93.23.13217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Liu H., Köhler J., Fink G. R. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science. 1994 Dec 9;266(5191):1723–1726. doi: 10.1126/science.7992058. [DOI] [PubMed] [Google Scholar]
  28. Liu H., Styles C. A., Fink G. R. Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science. 1993 Dec 10;262(5140):1741–1744. doi: 10.1126/science.8259520. [DOI] [PubMed] [Google Scholar]
  29. Madhani H. D., Fink G. R. Combinatorial control required for the specificity of yeast MAPK signaling. Science. 1997 Feb 28;275(5304):1314–1317. doi: 10.1126/science.275.5304.1314. [DOI] [PubMed] [Google Scholar]
  30. Maine G. T., Surosky R. T., Tye B. K. Isolation and characterization of the centromere from chromosome V (CEN5) of Saccharomyces cerevisiae. Mol Cell Biol. 1984 Jan;4(1):86–91. doi: 10.1128/mcb.4.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Malathi K., Ganesan K., Datta A. Identification of a putative transcription factor in Candida albicans that can complement the mating defect of Saccharomyces cerevisiae ste12 mutants. J Biol Chem. 1994 Sep 16;269(37):22945–22951. [PubMed] [Google Scholar]
  32. Mann C., Davis R. W. Instability of dicentric plasmids in yeast. Proc Natl Acad Sci U S A. 1983 Jan;80(1):228–232. doi: 10.1073/pnas.80.1.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mösch H. U., Roberts R. L., Fink G. R. Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5352–5356. doi: 10.1073/pnas.93.11.5352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nakaseko Y., Adachi Y., Funahashi S., Niwa O., Yanagida M. Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J. 1986 May;5(5):1011–1021. doi: 10.1002/j.1460-2075.1986.tb04316.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ohkuma M., Hwang C. W., Masuda Y., Nishida H., Sugiyama J., Ohta A., Takagi M. Evolutionary position of n-alkane-assimilating yeast Candida maltosa shown by nucleotide sequence of small-subunit ribosomal RNA gene. Biosci Biotechnol Biochem. 1993 Oct;57(10):1793–1794. doi: 10.1271/bbb.57.1793. [DOI] [PubMed] [Google Scholar]
  36. Ohkuma M., Kobayashi K., Kawai S., Hwang C. W., Ohta A., Takagi M. Identification of a centromeric activity in the autonomously replicating TRA region allows improvement of the host-vector system for Candida maltosa. Mol Gen Genet. 1995 Dec 10;249(4):447–455. doi: 10.1007/BF00287107. [DOI] [PubMed] [Google Scholar]
  37. Ohkuma M., Muraoka S., Hwang C. W., Ohta A., Takagi M. Cloning of the C-URA3 gene and construction of a triple auxotroph (his5, ade1, ura3) as a useful host for the genetic engineering of Candida maltosa. Curr Genet. 1993 Mar;23(3):205–210. doi: 10.1007/BF00351497. [DOI] [PubMed] [Google Scholar]
  38. Ohkuma M., Muraoka S., Tanimoto T., Fujii M., Ohta A., Takagi M. CYP52 (cytochrome P450alk) multigene family in Candida maltosa: identification and characterization of eight members. DNA Cell Biol. 1995 Feb;14(2):163–173. doi: 10.1089/dna.1995.14.163. [DOI] [PubMed] [Google Scholar]
  39. Pluta A. F., Mackay A. M., Ainsztein A. M., Goldberg I. G., Earnshaw W. C. The centromere: hub of chromosomal activities. Science. 1995 Dec 8;270(5242):1591–1594. doi: 10.1126/science.270.5242.1591. [DOI] [PubMed] [Google Scholar]
  40. Roberts R. L., Fink G. R. Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 1994 Dec 15;8(24):2974–2985. doi: 10.1101/gad.8.24.2974. [DOI] [PubMed] [Google Scholar]
  41. Saporito-Irwin S. M., Birse C. E., Sypherd P. S., Fonzi W. A. PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol. 1995 Feb;15(2):601–613. doi: 10.1128/mcb.15.2.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Scherer S., Magee P. T. Genetics of Candida albicans. Microbiol Rev. 1990 Sep;54(3):226–241. doi: 10.1128/mr.54.3.226-241.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Soll D. R., Morrow B., Srikantha T. High-frequency phenotypic switching in Candida albicans. Trends Genet. 1993 Feb;9(2):61–65. doi: 10.1016/0168-9525(93)90189-O. [DOI] [PubMed] [Google Scholar]
  44. Takagi M., Kawai S., Chang M. C., Shibuya I., Yano K. Construction of a host-vector system in Candida maltosa by using an ARS site isolated from its genome. J Bacteriol. 1986 Aug;167(2):551–555. doi: 10.1128/jb.167.2.551-555.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tani Y., Yamada Y., Kamihara T. Morphological change in Candida tropicalis pK 233 caused by ethanol and its prevention by myo-inositol. Biochem Biophys Res Commun. 1979 Nov 14;91(1):351–355. doi: 10.1016/0006-291x(79)90625-9. [DOI] [PubMed] [Google Scholar]
  46. Ward M. P., Gimeno C. J., Fink G. R., Garrett S. SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol Cell Biol. 1995 Dec;15(12):6854–6863. doi: 10.1128/mcb.15.12.6854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wright R. M., Repine T., Repine J. E. Reversible pseudohyphal growth in haploid Saccharomyces cerevisiae is an aerobic process. Curr Genet. 1993 May-Jun;23(5-6):388–391. doi: 10.1007/BF00312623. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES