Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1991 Apr;57(4):1094–1101. doi: 10.1128/aem.57.4.1094-1101.1991

Modeling of bacterial growth as a function of temperature.

M H Zwietering 1, J T de Koos 1, B E Hasenack 1, J C de Witt 1, K van't Riet 1
PMCID: PMC182851  PMID: 2059034

Abstract

The temperature of chilled foods is a very important variable for microbial safety in a production and distribution chain. To predict the number of organisms as a function of temperature and time, it is essential to model the lag time, specific growth rate, and asymptote (growth yield) as a function of temperature. The objective of this research was to determine the suitability and usefulness of different models, either available from the literature or newly developed. The models were compared by using an F test, by which the lack of fit of the models was compared with the measuring error. From the results, a hyperbolic model was selected for the description of the lag time as a function of temperature. Modified forms of the Ratkowsky model were selected as the most suitable model for both the growth rate and the asymptote as a function of temperature. The selected models could be used to predict experimentally determined numbers of organisms as a function of temperature and time.

Full text

PDF
1096

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ratkowsky D. A., Lowry R. K., McMeekin T. A., Stokes A. N., Chandler R. E. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol. 1983 Jun;154(3):1222–1226. doi: 10.1128/jb.154.3.1222-1226.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ratkowsky D. A., Olley J., McMeekin T. A., Ball A. Relationship between temperature and growth rate of bacterial cultures. J Bacteriol. 1982 Jan;149(1):1–5. doi: 10.1128/jb.149.1.1-5.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Schoolfield R. M., Sharpe P. J., Magnuson C. E. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J Theor Biol. 1981 Feb 21;88(4):719–731. doi: 10.1016/0022-5193(81)90246-0. [DOI] [PubMed] [Google Scholar]
  4. Sharpe P. J., Curry G. L., DeMichele D. W., Cole C. L. Distribution model of organism development times. J Theor Biol. 1977 May 7;66(1):21–38. doi: 10.1016/0022-5193(77)90309-5. [DOI] [PubMed] [Google Scholar]
  5. Sharpe P. J., DeMichele D. W. Reaction kinetics of poikilotherm development. J Theor Biol. 1977 Feb 21;64(4):649–670. doi: 10.1016/0022-5193(77)90265-x. [DOI] [PubMed] [Google Scholar]
  6. Zwietering M. H., Jongenburger I., Rombouts F. M., van 't Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990 Jun;56(6):1875–1881. doi: 10.1128/aem.56.6.1875-1881.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES