Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1991 Jun;57(6):1805–1812. doi: 10.1128/aem.57.6.1805-1812.1991

Genetic Variation of Lactobacillus delbrueckii subsp. lactis Bacteriophages Isolated from Cheese Processing Plants in Finland

Päivi Forsman 1, Tapani Alatossava 1,*
PMCID: PMC183472  PMID: 16348513

Abstract

The genomes of four Lactobacillus delbrueckii subsp. lactis bacteriophages were characterized by restriction endonuclease mapping, Southern hybridization, and heteroduplex analysis. The phages were isolated from different cheese processing plants in Finland between 1950 and 1972. All four phages had a small isometric head and a long noncontractile tail. Two different types of genome (double-stranded DNA) organization existed among the different phages, the pac type and the cos type, corresponding to alternative types of phage DNA packaging. Three phages belonged to the pac type, and a fourth was a cos-type phage. The pac-type phages were genetically closely related. In the genomes of the pac-type phages, three putative insertion/deletions (0.7 to 0.8 kb, 1.0 kb, and 1.5 kb) and one other region (0.9 kb) containing clustered base substitutions were discovered and localized. At the phenotype level, three main differences were observed among the pac-type phages. These concerned two minor structural proteins and the efficiency of phage DNA packaging. The genomes of the pac-type phages showed only weak homology with that of the cos-type phage. Phage-related DNA, probably a defective prophage, was located in the chromosome of the host strain sensitive to the cos-type phage. This DNA exhibited homology under stringent conditions to the pac-type phages.

Full text

PDF
1811

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi U., Pollard T. D. A glow discharge unit to render electron microscope grids and other surfaces hydrophilic. J Electron Microsc Tech. 1987 Sep;7(1):29–33. doi: 10.1002/jemt.1060070104. [DOI] [PubMed] [Google Scholar]
  2. Alatossava T. Factors affecting in vitro DNA ejection of the Lactobacillus lactis bacteriophage LL-H. J Gen Virol. 1982 Mar;59(Pt 1):173–175. doi: 10.1099/0022-1317-59-1-173. [DOI] [PubMed] [Google Scholar]
  3. Anderson D. G., McKay L. L. Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol. 1983 Sep;46(3):549–552. doi: 10.1128/aem.46.3.549-552.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Becker A., Murialdo H. Bacteriophage lambda DNA: the beginning of the end. J Bacteriol. 1990 Jun;172(6):2819–2824. doi: 10.1128/jb.172.6.2819-2824.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradley D. E. Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev. 1967 Dec;31(4):230–314. doi: 10.1128/br.31.4.230-314.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Casjens S., Huang W. M., Hayden M., Parr R. Initiation of bacteriophage P22 DNA packaging series. Analysis of a mutant that alters the DNA target specificity of the packaging apparatus. J Mol Biol. 1987 Apr 5;194(3):411–422. doi: 10.1016/0022-2836(87)90671-1. [DOI] [PubMed] [Google Scholar]
  7. Coveney J. A., Fitzgerald G. F., Daly C. Detailed characterization and comparison of four lactic streptococcal bacteriophages based on morphology, restriction mapping, DNA homology, and structural protein analysis. Appl Environ Microbiol. 1987 Jul;53(7):1439–1447. doi: 10.1128/aem.53.7.1439-1447.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davis R. W., Davidson N. Electron-microscopic visualization of deletion mutations. Proc Natl Acad Sci U S A. 1968 May;60(1):243–250. doi: 10.1073/pnas.60.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jarvis A. W. DNA-DNA Homology Between Lactic Streptococci and Their Temperate and Lytic Phages. Appl Environ Microbiol. 1984 May;47(5):1031–1038. doi: 10.1128/aem.47.5.1031-1038.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jarvis A. W., Meyer J. Electron microscopic heteroduplex study and restriction endonuclease cleavage analysis of the DNA genomes of three lactic streptococcal bacteriophages. Appl Environ Microbiol. 1986 Mar;51(3):566–571. doi: 10.1128/aem.51.3.566-571.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klaenhammer T. R., McKay L. L., Baldwin K. A. Improved lysis of group N streptococci for isolation and rapid characterization of plasmid deoxyribonucleic acid. Appl Environ Microbiol. 1978 Mar;35(3):592–600. doi: 10.1128/aem.35.3.592-600.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lahbib-Mansais Y., Mata M., Ritzenthaler P. Molecular taxonomy of Lactobacillus phages. Biochimie. 1988 Mar;70(3):429–435. doi: 10.1016/0300-9084(88)90217-9. [DOI] [PubMed] [Google Scholar]
  14. Mata M., Trautwetter A., Luthaud G., Ritzenthaler P. Thirteen Virulent and Temperate Bacteriophages of Lactobacillus bulgaricus and Lactobacillus lactis Belong to a Single DNA Homology Group. Appl Environ Microbiol. 1986 Oct;52(4):812–818. doi: 10.1128/aem.52.4.812-818.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Relano P., Mata M., Bonneau M., Ritzenthaler P. Molecular characterization and comparison of 38 virulent and temperate bacteriophages of Streptococcus lactis. J Gen Microbiol. 1987 Nov;133(11):3053–3063. doi: 10.1099/00221287-133-11-3053. [DOI] [PubMed] [Google Scholar]
  16. Sarimo S. S., Aaltonen L. DNA, RNA and protein synthesis in OLL55-infected Lactobacillus lactis. Arch Microbiol. 1978 Feb;116(2):191–195. doi: 10.1007/BF00406036. [DOI] [PubMed] [Google Scholar]
  17. Shimizu-Kadota M., Sakurai T., Tsuchida N. Prophage Origin of a Virulent Phage Appearing on Fermentations of Lactobacillus casei S-1. Appl Environ Microbiol. 1983 Feb;45(2):669–674. doi: 10.1128/aem.45.2.669-674.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  19. Stackebrandt E., Teuber M. Molecular taxonomy and phylogenetic position of lactic acid bacteria. Biochimie. 1988 Mar;70(3):317–324. doi: 10.1016/0300-9084(88)90204-0. [DOI] [PubMed] [Google Scholar]
  20. Steenson L. R., Klaenhammer T. R. Streptococcus cremoris M12R transconjugants carrying the conjugal plasmid pTR2030 are insensitive to attack by lytic bacteriophages. Appl Environ Microbiol. 1985 Oct;50(4):851–858. doi: 10.1128/aem.50.4.851-858.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Trautwetter A., Ritzenthaler P., Alatossava T., Mata-Gilsinger M. Physical and genetic characterization of the genome of Lactobacillus lactis bacteriophage LL-H. J Virol. 1986 Sep;59(3):551–555. doi: 10.1128/jvi.59.3.551-555.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES