Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Nov;98(3):735–740. doi: 10.1111/j.1476-5381.1989.tb14600.x

Effects of benzodiazepines and non-benzodiazepine compounds on the GABA-induced response in frog isolated sensory neurones.

T Yakushiji 1, T Fukuda 1, Y Oyama 1, N Akaike 1
PMCID: PMC1854765  PMID: 2574062

Abstract

1. The effects of benzodiazepines and non-benzodiazepine compounds on the gamma-aminobutyric acid (GABA)-induced chloride current (ICl) were studied in frog isolated sensory neurones by use of a concentration-jump (termed 'concentration-clamp') technique, under single-electrode voltage-clamp conditions. The drugs used were classified into four categories as follows: full benzodiazepine receptor agonists (diazepam, clonazepam, nitrazepam, midazolam, clotiazepam and etizolam), partial agonists (CL 218,872, Ro 16-6028, Ro 17-1812 and Ro 23-0364), inverse agonists (Ro 15-3505, FG 7142 and beta-CCE) and a benzodiazepine receptor antagonist, Ro 15-1788 (flumazenil). 2. All full agonists at concentrations of 3 x 10(-6) M or less increased dose-dependently the peak amplitude of ICl elicited by 3 x 10(-6) M GABA to twice to three times larger than the control. However, no further augmentation of the GABA response was observed at concentrations of 1 x 10(-5) M or higher. Partial agonists also showed a dose-dependent augmentation of the GABA response at concentrations ranging from 3 x 10(-8) M to 3 x 10(-5) M, but their efficacies of augmentation of the GABA response were only about half or less of those of full agonists. Of the inverse agonists, beta-CCE had a unique dose-dependent effect on the GABA response. Beta-CCE reduced dose-dependently the GABA response at concentrations of less than 3 x 10(-6) M, but augmented it at concentrations of 3 x 10(-5) M and 6 x 10(-5) M. The inverse agonists reduced dose-dependently the GABA response.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
738

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akaike N., Hattori K., Inomata N., Oomura Y. gamma-Aminobutyric-acid- and pentobarbitone-gated chloride currents in internally perfused frog sensory neurones. J Physiol. 1985 Mar;360:367–386. doi: 10.1113/jphysiol.1985.sp015622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akaike N., Hattori K., Oomura Y., Carpenter D. O. Bicuculline and picrotoxin block gamma-aminobutyric acid-gated Cl- conductance by different mechanisms. Experientia. 1985 Jan 15;41(1):70–71. doi: 10.1007/BF02005880. [DOI] [PubMed] [Google Scholar]
  3. Akaike N., Inomata N., Tokutomi N. Contribution of chloride shifts to the fade of gamma-aminobutyric acid-gated currents in frog dorsal root ganglion cells. J Physiol. 1987 Oct;391:219–234. doi: 10.1113/jphysiol.1987.sp016735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Akaike N., Inoue M., Krishtal O. A. 'Concentration-clamp' study of gamma-aminobutyric-acid-induced chloride current kinetics in frog sensory neurones. J Physiol. 1986 Oct;379:171–185. doi: 10.1113/jphysiol.1986.sp016246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Akaike N., Maruyama T., Sikdar S. K., Yasui S. Sodium-dependent suppression of gamma-aminobutyric-acid-gated chloride currents in internally perfused frog sensory neurones. J Physiol. 1987 Nov;392:543–562. doi: 10.1113/jphysiol.1987.sp016796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Akaike N., Maruyama T., Tokutomi N. Kinetic properties of the pentobarbitone-gated chloride current in frog sensory neurones. J Physiol. 1987 Dec;394:85–98. doi: 10.1113/jphysiol.1987.sp016861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blanchard J. C., Boireau A., Garret C., Julou L. In vitro and in vivo inhibition by zopiclone of benzodiazepine binding to rodent brain receptors. Life Sci. 1979 Jun 25;24(26):2417–2420. doi: 10.1016/0024-3205(79)90449-1. [DOI] [PubMed] [Google Scholar]
  8. Blanchard J. C., Julou L. Suriclone: a new cyclopyrrolone derivative recognizing receptors labeled by benzodiazepines in rat hippocampus and cerebellum. J Neurochem. 1983 Mar;40(3):601–607. doi: 10.1111/j.1471-4159.1983.tb08023.x. [DOI] [PubMed] [Google Scholar]
  9. Chan C. Y., Farb D. H. Modulation of neurotransmitter action: control of the gamma-aminobutyric acid response through the benzodiazepine receptor. J Neurosci. 1985 Sep;5(9):2365–2373. doi: 10.1523/JNEUROSCI.05-09-02365.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Costa E., Guidotti A., Mao C. C. Evidence for involvement of GABA in the action of benzodiazepines: studies on rat cerebellum. Adv Biochem Psychopharmacol. 1975;(14):113–130. [PubMed] [Google Scholar]
  11. Haefely W., Kulcsár A., Möhler H., Pieri L., Polc P., Schaffner R. Possible involvement of GABA in the central actions of benzodiazepines. Adv Biochem Psychopharmacol. 1975;(14):131–151. [PubMed] [Google Scholar]
  12. Hattori K., Akaike N., Oomura Y., Kuraoka S. Internal perfusion studies demonstrating GABA-induced chloride responses in frog primary afferent neurons. Am J Physiol. 1984 Mar;246(3 Pt 1):C259–C265. doi: 10.1152/ajpcell.1984.246.3.C259. [DOI] [PubMed] [Google Scholar]
  13. Hattori K., Oomura Y., Akaike N. Diazepam action on gamma-aminobutyric acid-activated chloride currents in internally perfused frog sensory neurons. Cell Mol Neurobiol. 1986 Sep;6(3):307–323. doi: 10.1007/BF00711116. [DOI] [PubMed] [Google Scholar]
  14. Hunkeler W., Möhler H., Pieri L., Polc P., Bonetti E. P., Cumin R., Schaffner R., Haefely W. Selective antagonists of benzodiazepines. Nature. 1981 Apr 9;290(5806):514–516. doi: 10.1038/290514a0. [DOI] [PubMed] [Google Scholar]
  15. Inoue M., Oomura Y., Yakushiji T., Akaike N. Intracellular calcium ions decrease the affinity of the GABA receptor. Nature. 1986 Nov 13;324(6093):156–158. doi: 10.1038/324156a0. [DOI] [PubMed] [Google Scholar]
  16. Ishizuka S., Hattori K., Akaike N. Separation of ionic currents in the somatic membrane of frog sensory neurons. J Membr Biol. 1984;78(1):19–28. doi: 10.1007/BF01872528. [DOI] [PubMed] [Google Scholar]
  17. Lippa A. S., Critchett D., Sano M. C., Klepner C. A., Greenblatt E. N., Coupet J., Beer B. Benzodiazepine receptors: cellular and behavioral characteristics. Pharmacol Biochem Behav. 1979 May;10(5):831–843. doi: 10.1016/0091-3057(79)90342-3. [DOI] [PubMed] [Google Scholar]
  18. Möhler H., Okada T. Benzodiazepine receptor: demonstration in the central nervous system. Science. 1977 Nov 25;198(4319):849–851. doi: 10.1126/science.918669. [DOI] [PubMed] [Google Scholar]
  19. Polc P., Bonetti E. P., Schaffner R., Haefely W. A three-state model of the benzodiazepine receptor explains the interactions between the benzodiazepine antagonist Ro 15-1788, benzodiazepine tranquilizers, beta-carbolines, and phenobarbitone. Naunyn Schmiedebergs Arch Pharmacol. 1982 Dec;321(4):260–264. doi: 10.1007/BF00498510. [DOI] [PubMed] [Google Scholar]
  20. Richards J. G., Möhler H. Benzodiazepine receptors. Neuropharmacology. 1984 Feb;23(2B):233–242. doi: 10.1016/0028-3908(84)90064-9. [DOI] [PubMed] [Google Scholar]
  21. Sigel E., Baur R. Allosteric modulation by benzodiazepine receptor ligands of the GABAA receptor channel expressed in Xenopus oocytes. J Neurosci. 1988 Jan;8(1):289–295. doi: 10.1523/JNEUROSCI.08-01-00289.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Williams M. Anxioselective anxiolytics. J Med Chem. 1983 May;26(5):619–628. doi: 10.1021/jm00359a001. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES