Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1997 Apr;150(4):1213–1221.

Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro.

M E Laniado 1, E N Lalani 1, S P Fraser 1, J A Grimes 1, G Bhangal 1, M B Djamgoz 1, P D Abel 1
PMCID: PMC1858184  PMID: 9094978

Abstract

Ion channels are important for many cellular functions and disease states including cystic fibrosis and multidrug resistance. Previous work in the Dunning rat model of prostate cancer has suggested a relationship between voltage-activated Na+ channels (VASCs) and the invasive phenotype in vitro. The objectives of this study were to 1) evaluate the expression of VASCs in the LNCaP and PC-3 human prostate cancer cell lines by Western blotting, flow cytometry, and whole-cell patch clamping, 2) determine their role in invasion in vitro using modified Boyden chambers with and without a specific blocker of VASCs (tetrodotoxin). A 260-kd protein representing VASCs was found only in the PC-3 cell line, and these were shown to be membrane expressed on flow cytometry. Patch clamping studies indicated that functional VASCs were present in 10% of PC-3 cells and blocking these by tetrodotoxin (600 nmol/L) reduced their invasiveness by 31% (P = 0.02) without affecting the invasiveness of the LNCaP cells. These results indicate that the reduction of invasion is a direct result of VASC blockade and not a nonspecific action of the drug. This is the first report of VASCs in a human prostatic cell line. VASCs are present in PC-3 but not LNCaP cells as determined by both protein and functional studies. Tetrodotoxin reduced the invasiveness of PC-3 but not LNCaP cells, and these data suggest that ion channels may play an important functional role in tumor invasion.

Full text

PDF
1216

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arcangeli A., Becchetti A., Mannini A., Mugnai G., De Filippi P., Tarone G., Del Bene M. R., Barletta E., Wanke E., Olivotto M. Integrin-mediated neurite outgrowth in neuroblastoma cells depends on the activation of potassium channels. J Cell Biol. 1993 Sep;122(5):1131–1143. doi: 10.1083/jcb.122.5.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Becchetti A., Arcangeli A., Del Bene M. R., Olivotto M., Wanke E. Response to fibronectin-integrin interaction in leukaemia cells: delayed enhancing of a K+ current. Proc Biol Sci. 1992 Jun 22;248(1323):235–240. doi: 10.1098/rspb.1992.0067. [DOI] [PubMed] [Google Scholar]
  3. Blandino J. K., Viglione M. P., Bradley W. A., Oie H. K., Kim Y. I. Voltage-dependent sodium channels in human small-cell lung cancer cells: role in action potentials and inhibition by Lambert-Eaton syndrome IgG. J Membr Biol. 1995 Jan;143(2):153–163. doi: 10.1007/BF00234661. [DOI] [PubMed] [Google Scholar]
  4. Bokvist K., Eliasson L., Ammälä C., Renström E., Rorsman P. Co-localization of L-type Ca2+ channels and insulin-containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B-cells. EMBO J. 1995 Jan 3;14(1):50–57. doi: 10.1002/j.1460-2075.1995.tb06974.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Calissano P., Ciotti M. T., Battistini L., Zona C., Angelini A., Merlo D., Mercanti D. Recombinant human insulin-like growth factor I exerts a trophic action and confers glutamate sensitivity on glutamate-resistant cerebellar granule cells. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8752–8756. doi: 10.1073/pnas.90.18.8752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Campbell M. J., Gardner M. J. Calculating confidence intervals for some non-parametric analyses. Br Med J (Clin Res Ed) 1988 May 21;296(6634):1454–1456. doi: 10.1136/bmj.296.6634.1454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen T. C., Law B., Kondratyuk T., Rossie S. Identification of soluble protein phosphatases that dephosphorylate voltage-sensitive sodium channels in rat brain. J Biol Chem. 1995 Mar 31;270(13):7750–7756. doi: 10.1074/jbc.270.13.7750. [DOI] [PubMed] [Google Scholar]
  8. Cohen-Armon M., Sokolovsky M. Evidence for involvement of the voltage-dependent Na+ channel gating in depolarization-induced activation of G-proteins. J Biol Chem. 1993 May 5;268(13):9824–9838. [PubMed] [Google Scholar]
  9. Cress A. E., Rabinovitz I., Zhu W., Nagle R. B. The alpha 6 beta 1 and alpha 6 beta 4 integrins in human prostate cancer progression. Cancer Metastasis Rev. 1995 Sep;14(3):219–228. doi: 10.1007/BF00690293. [DOI] [PubMed] [Google Scholar]
  10. Cummins T. R., Xia Y., Haddad G. G. Functional properties of rat and human neocortical voltage-sensitive sodium currents. J Neurophysiol. 1994 Mar;71(3):1052–1064. doi: 10.1152/jn.1994.71.3.1052. [DOI] [PubMed] [Google Scholar]
  11. D'Arcangelo G., Paradiso K., Shepherd D., Brehm P., Halegoua S., Mandel G. Neuronal growth factor regulation of two different sodium channel types through distinct signal transduction pathways. J Cell Biol. 1993 Aug;122(4):915–921. doi: 10.1083/jcb.122.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Djakiew D., Pflug B. R., Delsite R., Onoda M., Lynch J. H., Arand G., Thompson E. W. Chemotaxis and chemokinesis of human prostate tumor cell lines in response to human prostate stromal cell secretory proteins containing a nerve growth factor-like protein. Cancer Res. 1993 Mar 15;53(6):1416–1420. [PubMed] [Google Scholar]
  13. Fong C. J., Sutkowski D. M., Kozlowski J. M., Lee C. Utilization of the Boyden chamber to further characterize in vitro migration and invasion of benign and malignant human prostatic epithelial cells. Invasion Metastasis. 1992;12(5-6):264–274. [PubMed] [Google Scholar]
  14. Furr B. J., Tucker H. The preclinical development of bicalutamide: pharmacodynamics and mechanism of action. Urology. 1996 Jan;47(1A):13–32. doi: 10.1016/s0090-4295(96)80003-3. [DOI] [PubMed] [Google Scholar]
  15. Gellens M. E., George A. L., Jr, Chen L. Q., Chahine M., Horn R., Barchi R. L., Kallen R. G. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):554–558. doi: 10.1073/pnas.89.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grimes J. A., Fraser S. P., Stephens G. J., Downing J. E., Laniado M. E., Foster C. S., Abel P. D., Djamgoz M. B. Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett. 1995 Aug 7;369(2-3):290–294. doi: 10.1016/0014-5793(95)00772-2. [DOI] [PubMed] [Google Scholar]
  17. Horoszewicz J. S., Leong S. S., Kawinski E., Karr J. P., Rosenthal H., Chu T. M., Mirand E. A., Murphy G. P. LNCaP model of human prostatic carcinoma. Cancer Res. 1983 Apr;43(4):1809–1818. [PubMed] [Google Scholar]
  18. Isom L. L., Ragsdale D. S., De Jongh K. S., Westenbroek R. E., Reber B. F., Scheuer T., Catterall W. A. Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell. 1995 Nov 3;83(3):433–442. doi: 10.1016/0092-8674(95)90121-3. [DOI] [PubMed] [Google Scholar]
  19. Iwamura M., Sluss P. M., Casamento J. B., Cockett A. T. Insulin-like growth factor I: action and receptor characterization in human prostate cancer cell lines. Prostate. 1993;22(3):243–252. doi: 10.1002/pros.2990220307. [DOI] [PubMed] [Google Scholar]
  20. Jarnot M. D., Corbett A. M. High titer antibody to mammalian neuronal sodium channels produces sustained channel block. Brain Res. 1995 Mar 13;674(1):159–162. doi: 10.1016/0006-8993(95)00011-e. [DOI] [PubMed] [Google Scholar]
  21. Kaighn M. E., Narayan K. S., Ohnuki Y., Lechner J. F., Jones L. W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol. 1979 Jul;17(1):16–23. [PubMed] [Google Scholar]
  22. Kondo S., Yin D., Morimura T., Kubo H., Nakatsu S., Takeuchi J. Combination therapy with cisplatin and nifedipine induces apoptosis in cisplatin-sensitive and cisplatin-resistant human glioblastoma cells. Br J Cancer. 1995 Feb;71(2):282–289. doi: 10.1038/bjc.1995.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lee C., Shevrin D. H., Kozlowski J. M. In vivo and in vitro approaches to study metastasis in human prostatic cancer. Cancer Metastasis Rev. 1993 Mar;12(1):21–28. doi: 10.1007/BF00689787. [DOI] [PubMed] [Google Scholar]
  24. Marino A. A., Iliev I. G., Schwalke M. A., Gonzalez E., Marler K. C., Flanagan C. A. Association between cell membrane potential and breast cancer. Tumour Biol. 1994;15(2):82–89. doi: 10.1159/000217878. [DOI] [PubMed] [Google Scholar]
  25. Miller J. A., Agnew W. S., Levinson S. R. Principal glycopeptide of the tetrodotoxin/saxitoxin binding protein from Electrophorus electricus: isolation and partial chemical and physical characterization. Biochemistry. 1983 Jan 18;22(2):462–470. doi: 10.1021/bi00271a032. [DOI] [PubMed] [Google Scholar]
  26. Müller T. H., Misgeld U., Swandulla D. Ionic currents in cultured rat hypothalamic neurones. J Physiol. 1992 May;450:341–362. doi: 10.1113/jphysiol.1992.sp019130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nagle R. B., Ahmann F. R., McDaniel K. M., Paquin M. L., Clark V. A., Celniker A. Cytokeratin characterization of human prostatic carcinoma and its derived cell lines. Cancer Res. 1987 Jan 1;47(1):281–286. [PubMed] [Google Scholar]
  28. Nagy P., Panyi G., Jenei A., Bene L., Gáspár R., Jr, Matkó J., Damjanovich S. Ion-channel activities regulate transmembrane signaling in thymocyte apoptosis and T-cell activation. Immunol Lett. 1995 Jan;44(2-3):91–95. doi: 10.1016/0165-2478(94)00198-z. [DOI] [PubMed] [Google Scholar]
  29. Pancrazio J. J., Tabbara I. A., Kim Y. I. Voltage-activated K+ conductance and cell proliferation in small-cell lung cancer. Anticancer Res. 1993 Jul-Aug;13(4):1231–1234. [PubMed] [Google Scholar]
  30. Pang S., Taneja S., Dardashti K., Cohan P., Kaboo R., Sokoloff M., Tso C. L., Dekernion J. B., Belldegrun A. S. Prostate tissue specificity of the prostate-specific antigen promoter isolated from a patient with prostate cancer. Hum Gene Ther. 1995 Nov;6(11):1417–1426. doi: 10.1089/hum.1995.6.11-1417. [DOI] [PubMed] [Google Scholar]
  31. Romijn J. C., Verkoelen C. F., Schroeder F. H. Application of the MTT assay to human prostate cancer cell lines in vitro: establishment of test conditions and assessment of hormone-stimulated growth and drug-induced cytostatic and cytotoxic effects. Prostate. 1988;12(1):99–110. doi: 10.1002/pros.2990120112. [DOI] [PubMed] [Google Scholar]
  32. Schuurmans A. L., Bolt J., Voorhorst M. M., Blankenstein R. A., Mulder E. Regulation of growth and epidermal growth factor receptor levels of LNCaP prostate tumor cells by different steroids. Int J Cancer. 1988 Dec 15;42(6):917–922. doi: 10.1002/ijc.2910420622. [DOI] [PubMed] [Google Scholar]
  33. Schwab A., Wojnowski L., Gabriel K., Oberleithner H. Oscillating activity of a Ca(2+)-sensitive K+ channel. A prerequisite for migration of transformed Madin-Darby canine kidney focus cells. J Clin Invest. 1994 Apr;93(4):1631–1636. doi: 10.1172/JCI117144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sheng Z. H., Rettig J., Cook T., Catterall W. A. Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature. 1996 Feb 1;379(6564):451–454. doi: 10.1038/379451a0. [DOI] [PubMed] [Google Scholar]
  35. Sheridan R. E. Electrophysiological characterization of sodium channel types in the HCN-1A human cortical cell line. Brain Res Bull. 1993;30(5-6):577–583. doi: 10.1016/0361-9230(93)90085-p. [DOI] [PubMed] [Google Scholar]
  36. Sherwood E. R., Berg L. A., Mitchell N. J., McNeal J. E., Kozlowski J. M., Lee C. Differential cytokeratin expression in normal, hyperplastic and malignant epithelial cells from human prostate. J Urol. 1990 Jan;143(1):167–171. doi: 10.1016/s0022-5347(17)39903-2. [DOI] [PubMed] [Google Scholar]
  37. Smith R. D., Goldin A. L. Phosphorylation of brain sodium channels in the I--II linker modulates channel function in Xenopus oocytes. J Neurosci. 1996 Mar 15;16(6):1965–1974. doi: 10.1523/JNEUROSCI.16-06-01965.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Steinsapir J., Socci R., Reinach P. Effects of androgen on intracellular calcium of LNCaP cells. Biochem Biophys Res Commun. 1991 Aug 30;179(1):90–96. doi: 10.1016/0006-291x(91)91338-d. [DOI] [PubMed] [Google Scholar]
  39. Tabb J. S., Fanger G. R., Wilson E. M., Maue R. A., Henderson L. P. Suppression of sodium channel function in differentiating C2 muscle cells stably overexpressing rat androgen receptors. J Neurosci. 1994 Feb;14(2):763–773. doi: 10.1523/JNEUROSCI.14-02-00763.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Taplin M. E., Bubley G. J., Shuster T. D., Frantz M. E., Spooner A. E., Ogata G. K., Keer H. N., Balk S. P. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med. 1995 May 25;332(21):1393–1398. doi: 10.1056/NEJM199505253322101. [DOI] [PubMed] [Google Scholar]
  41. Valverde M. A., Sheppard D. N., Represa J., Giraldez F. Development of Na(+)- and K(+)-currents in the cochlear ganglion of the chick embryo. Neuroscience. 1992 Dec;51(3):621–630. doi: 10.1016/0306-4522(92)90301-h. [DOI] [PubMed] [Google Scholar]
  42. Van Dolah F. M., Ramsdell J. S. Maitotoxin, a calcium channel activator, inhibits cell cycle progression through the G1/S and G2/M transitions and prevents CDC2 kinase activation in GH4C1 cells. J Cell Physiol. 1996 Jan;166(1):49–56. doi: 10.1002/(SICI)1097-4652(199601)166:1<49::AID-JCP6>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  43. Waters D. J., Janovitz E. B., Chan T. C. Spontaneous metastasis of PC-3 cells in athymic mice after implantation in orthotopic or ectopic microenvironments. Prostate. 1995 May;26(5):227–234. doi: 10.1002/pros.2990260502. [DOI] [PubMed] [Google Scholar]
  44. Wingo P. A., Tong T., Bolden S. Cancer statistics, 1995. CA Cancer J Clin. 1995 Jan-Feb;45(1):8–30. doi: 10.3322/canjclin.45.1.8. [DOI] [PubMed] [Google Scholar]
  45. Wonderlin W. F., Woodfork K. A., Strobl J. S. Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle. J Cell Physiol. 1995 Oct;165(1):177–185. doi: 10.1002/jcp.1041650121. [DOI] [PubMed] [Google Scholar]
  46. Wonderlin W. F., Woodfork K. A., Strobl J. S. Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle. J Cell Physiol. 1995 Oct;165(1):177–185. doi: 10.1002/jcp.1041650121. [DOI] [PubMed] [Google Scholar]
  47. Woodfork K. A., Wonderlin W. F., Peterson V. A., Strobl J. S. Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. J Cell Physiol. 1995 Feb;162(2):163–171. doi: 10.1002/jcp.1041620202. [DOI] [PubMed] [Google Scholar]
  48. Xiong Z., Sperelakis N., Noffsinger A., Fenoglio-Preiser C. Fast Na+ current in circular smooth muscle cells of the large intestine. Pflugers Arch. 1993 Jun;423(5-6):485–491. doi: 10.1007/BF00374945. [DOI] [PubMed] [Google Scholar]
  49. Yamashita N., Hamada H., Tsuruo T., Ogata E. Enhancement of voltage-gated Na+ channel current associated with multidrug resistance in human leukemia cells. Cancer Res. 1987 Jul 15;47(14):3736–3741. [PubMed] [Google Scholar]
  50. Yuan S., Trachtenberg J., Mills G. B., Brown T. J., Xu F., Keating A. Androgen-induced inhibition of cell proliferation in an androgen-insensitive prostate cancer cell line (PC-3) transfected with a human androgen receptor complementary DNA. Cancer Res. 1993 Mar 15;53(6):1304–1311. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES