Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Oct;101(2):273–280. doi: 10.1111/j.1476-5381.1990.tb12700.x

Effects of diltiazem on calcium concentrations in the cytosol and on force of contractions in porcine coronary arterial strips.

K Hirano 1, H Kanaide 1, S Abe 1, M Nakamura 1
PMCID: PMC1917686  PMID: 2257435

Abstract

1. Using front-surface fluorometry with fura-2-loaded porcine coronary arterial strips, we simultaneously measured effects of a Ca2+ antagonist, diltiazem, on cytosolic Ca2+ concentrations [( Ca2+]i) and on tension development. 2. In the presence of extracellular Ca2+ (1.25 mM), histamine concentration-dependently induced abrupt (the first component) and then sustained (the second component) elevations of [Ca2+]i. In the absence of extracellular Ca2+, histamine induced transient elevations of [Ca2+]i, and the time course was similar to that of the first component observed in the presence of extracellular Ca2+. Histamine caused a greater contraction for a given change in [Ca2+]i than did potassium, at [Ca2+]i over 300 nM. 3. Diltiazem, 10(-8)M to 10(-5)M, concentration-dependently inhibited the second component of [Ca2+]i elevation and tension development induced by histamine (10(-5) M). Only at higher concentrations (over 10(-5) M) did diltiazem inhibit the first component of increases in [Ca2+]i and tension development induced by histamine, both in the presence and absence of extracellular Ca2+. 4. Diltiazem (10(-6) M) inhibited increases in [Ca2+]i and tension development induced by cumulative applications of extracellular Ca2+ during K(+)-depolarization. The curve of [Ca2+]i against tension of these Ca2(+)-induced contractions obtained in diltiazem-treated strips overlapped with that obtained in untreated strips. This suggests that diltiazem has no direct effects on contractile elements. 5. In contrast, the histamine-induced Ca2(+)-tension curve (second component) was shifted in parallel to the left by diltiazem.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
277

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnathan E. S., Addonizio V. P., Shattil S. J. Interaction of verapamil with human platelet alpha-adrenergic receptors. Am J Physiol. 1982 Jan;242(1):H19–H23. doi: 10.1152/ajpheart.1982.242.1.H19. [DOI] [PubMed] [Google Scholar]
  2. Bostróm S. L., Ljung B., Mårdh S., Forsen S., Thulin E. Interaction of the antihypertensive drug felodipine with calmodulin. Nature. 1981 Aug 20;292(5825):777–778. doi: 10.1038/292777a0. [DOI] [PubMed] [Google Scholar]
  3. Bruschi G., Bruschi M. E., Regolisti G., Borghetti A. Myoplasmic Ca2+-force relationship studied with fura-2 during stimulation of rat aortic smooth muscle. Am J Physiol. 1988 May;254(5 Pt 2):H840–H854. doi: 10.1152/ajpheart.1988.254.5.H840. [DOI] [PubMed] [Google Scholar]
  4. Casteels R., Suzuki H. The effect of histamine on the smooth muscle cells of the ear artery of the rabbit. Pflugers Arch. 1980 Aug;387(1):17–25. doi: 10.1007/BF00580839. [DOI] [PubMed] [Google Scholar]
  5. Cauvin C., Loutzenhiser R., Van Breemen C. Mechanisms of calcium antagonist-induced vasodilation. Annu Rev Pharmacol Toxicol. 1983;23:373–396. doi: 10.1146/annurev.pa.23.040183.002105. [DOI] [PubMed] [Google Scholar]
  6. Fairhurst A. S., Whittaker M. L., Ehlert F. J. Interactions of D600 (methoxyverapamil) and local anesthetics with rat brain alpha-adrenergic and muscarinic receptors. Biochem Pharmacol. 1980 Feb;29(2):155–162. doi: 10.1016/0006-2952(80)90323-8. [DOI] [PubMed] [Google Scholar]
  7. Fleckenstein A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu Rev Pharmacol Toxicol. 1977;17:149–166. doi: 10.1146/annurev.pa.17.040177.001053. [DOI] [PubMed] [Google Scholar]
  8. Glossmann H., Hornung R. Calcium- and potassium-channel blockers interact with alpha-adrenoceptors. Mol Cell Endocrinol. 1980 Sep;19(3):243–251. doi: 10.1016/0303-7207(80)90054-4. [DOI] [PubMed] [Google Scholar]
  9. Green F. J., Farmer B. B., Wiseman G. L., Jose M. J., Watanabe A. M. Effect of membrane depolarization on binding of [3H]nitrendipine to rat cardiac myocytes. Circ Res. 1985 Apr;56(4):576–585. doi: 10.1161/01.res.56.4.576. [DOI] [PubMed] [Google Scholar]
  10. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  11. Himpens B., Somlyo A. P. Free-calcium and force transients during depolarization and pharmacomechanical coupling in guinea-pig smooth muscle. J Physiol. 1988 Jan;395:507–530. doi: 10.1113/jphysiol.1988.sp016932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hirano K., Kanaide H., Nakamura M. Effects of okadaic acid on cytosolic calcium concentrations and on contractions of the porcine coronary artery. Br J Pharmacol. 1989 Dec;98(4):1261–1266. doi: 10.1111/j.1476-5381.1989.tb12672.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Itoh T., Kajiwara M., Kitamura K., Kuriyama H. Roles of stored calcium on the mechanical response evoked in smooth muscle cells of the porcine coronary artery. J Physiol. 1982 Jan;322:107–125. doi: 10.1113/jphysiol.1982.sp014026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kamm K. E., Stull J. T. The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu Rev Pharmacol Toxicol. 1985;25:593–620. doi: 10.1146/annurev.pa.25.040185.003113. [DOI] [PubMed] [Google Scholar]
  15. Kanaide H., Kobayashi S., Nishimura J., Hasegawa M., Shogakiuchi Y., Matsumoto T., Nakamura M. Quin2 microfluorometry and effects of verapamil and diltiazem on calcium release from rat aorta smooth muscle cells in primary culture. Circ Res. 1988 Jul;63(1):16–26. doi: 10.1161/01.res.63.1.16. [DOI] [PubMed] [Google Scholar]
  16. Kanaide H., Yoshimura R., Makino N., Nakamura M. Regional myocardial function and metabolism during acute coronary artery occlusion. Am J Physiol. 1982 Jun;242(6):H980–H989. doi: 10.1152/ajpheart.1982.242.6.H980. [DOI] [PubMed] [Google Scholar]
  17. Karliner J. S., Motulsky H. J., Dunlap J., Brown J. H., Insel P. A. Verapamil competitively inhibits alpha 1-adrenergic and muscarinic but not beta-adrenergic receptors in rat myocardium. J Cardiovasc Pharmacol. 1982 May-Jun;4(3):515–520. doi: 10.1097/00005344-198205000-00025. [DOI] [PubMed] [Google Scholar]
  18. Kobayashi S., Kanaide H., Nakamura M. Cytosolic-free calcium transients in cultured vascular smooth muscle cells: microfluorometric measurements. Science. 1985 Aug 9;229(4713):553–556. doi: 10.1126/science.3927484. [DOI] [PubMed] [Google Scholar]
  19. Kodama M., Kanaide H., Abe S., Hirano K., Kai H., Nakamura M. Endothelin-induced Ca-independent contraction of the porcine coronary artery. Biochem Biophys Res Commun. 1989 May 15;160(3):1302–1308. doi: 10.1016/s0006-291x(89)80145-7. [DOI] [PubMed] [Google Scholar]
  20. Koiwaya Y., Ashihara T., Nakamura M., Etoh A. Plasma concentration of diltiazem after oral administration in normal volunteers. Clin Ther. 1981;3(6):436–440. [PubMed] [Google Scholar]
  21. Kuriyama H., Ito Y., Suzuki H., Kitamura K., Itoh T. Factors modifying contraction-relaxation cycle in vascular smooth muscles. Am J Physiol. 1982 Nov;243(5):H641–H662. doi: 10.1152/ajpheart.1982.243.5.H641. [DOI] [PubMed] [Google Scholar]
  22. Matsumoto T., Kanaide H., Nishimura J., Kuga T., Kobayashi S., Nakamura M. Histamine-induced calcium transients in vascular smooth muscle cells: effects of verapamil and diltiazem. Am J Physiol. 1989 Aug;257(2 Pt 2):H563–H570. doi: 10.1152/ajpheart.1989.257.2.H563. [DOI] [PubMed] [Google Scholar]
  23. Morgan J. P., Morgan K. G. Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J Physiol. 1984 Jun;351:155–167. doi: 10.1113/jphysiol.1984.sp015239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Motulsky H. J., Snavely M. D., Hughes R. J., Insel P. A. Interaction of verapamil and other calcium channel blockers with alpha 1- and alpha 2-adrenergic receptors. Circ Res. 1983 Feb;52(2):226–231. doi: 10.1161/01.res.52.2.226. [DOI] [PubMed] [Google Scholar]
  25. Nayler W. G., Thompson J. E., Jarrott B. The interaction of calcium antagonists (slow channel blockers) with myocardial alpha adrenoceptors. J Mol Cell Cardiol. 1982 Mar;14(3):185–188. doi: 10.1016/0022-2828(82)90118-3. [DOI] [PubMed] [Google Scholar]
  26. Nelson M. T., Standen N. B., Brayden J. E., Worley J. F., 3rd Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature. 1988 Nov 24;336(6197):382–385. doi: 10.1038/336382a0. [DOI] [PubMed] [Google Scholar]
  27. Rembold C. M., Murphy R. A. Myoplasmic [Ca2+] determines myosin phosphorylation in agonist-stimulated swine arterial smooth muscle. Circ Res. 1988 Sep;63(3):593–603. doi: 10.1161/01.res.63.3.593. [DOI] [PubMed] [Google Scholar]
  28. Rink T. J., Pozzan T. Using quin2 in cell suspensions. Cell Calcium. 1985 Apr;6(1-2):133–144. doi: 10.1016/0143-4160(85)90040-5. [DOI] [PubMed] [Google Scholar]
  29. Saida K., Nonomura Y. Characteristics of Ca2+- and Mg2+-induced tension development in chemically skinned smooth muscle fibers. J Gen Physiol. 1978 Jul;72(1):1–14. doi: 10.1085/jgp.72.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Saida K., van Breemen C. Mechanism of Ca++ antagonist-induced vasodilation. Intracellular actions. Circ Res. 1983 Feb;52(2):137–142. doi: 10.1161/01.res.52.2.137. [DOI] [PubMed] [Google Scholar]
  31. Sato K., Ozaki H., Karaki H. Changes in cytosolic calcium level in vascular smooth muscle strip measured simultaneously with contraction using fluorescent calcium indicator fura 2. J Pharmacol Exp Ther. 1988 Jul;246(1):294–300. [PubMed] [Google Scholar]
  32. Schächtele C., Wagner B., Rudolph C. Effect of Ca2+ entry blockers on myosin light-chain kinase and protein kinase C. Eur J Pharmacol. 1989 Apr 12;163(1):151–155. doi: 10.1016/0014-2999(89)90410-x. [DOI] [PubMed] [Google Scholar]
  33. Shimokawa H., Tomoike H., Nabeyama S., Yamamoto H., Araki H., Nakamura M., Ishii Y., Tanaka K. Coronary artery spasm induced in atherosclerotic miniature swine. Science. 1983 Aug 5;221(4610):560–562. doi: 10.1126/science.6408736. [DOI] [PubMed] [Google Scholar]
  34. Somlyo A. P. Excitation-contraction coupling and the ultrastructure of smooth muscle. Circ Res. 1985 Oct;57(4):497–507. doi: 10.1161/01.res.57.4.497. [DOI] [PubMed] [Google Scholar]
  35. Sommerville L. E., Hartshorne D. J. Intracellular calcium and smooth muscle contraction. Cell Calcium. 1986 Dec;7(5-6):353–364. doi: 10.1016/0143-4160(86)90038-2. [DOI] [PubMed] [Google Scholar]
  36. Suzuki H., Itoh T., Kuriyama H. Effects of diltiazem on smooth muscles and neuromuscular junction in the mesenteric artery. Am J Physiol. 1982 Mar;242(3):H325–H336. doi: 10.1152/ajpheart.1982.242.3.H325. [DOI] [PubMed] [Google Scholar]
  37. Suzuki H., Kou K. Direct and indirect effects of histamine on the smooth muscle cells of the guinea-pig main pulmonary artery. Pflugers Arch. 1983 Sep;399(1):46–53. doi: 10.1007/BF00652521. [DOI] [PubMed] [Google Scholar]
  38. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES