Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1993 Feb;67(2):247–253. doi: 10.1038/bjc.1993.48

The human EGF receptor as a target for cancer therapy: six new rat mAbs against the receptor on the breast carcinoma MDA-MB 468.

H Modjtahedi 1, J M Styles 1, C J Dean 1
PMCID: PMC1968163  PMID: 8094290

Abstract

Using the breast carcinoma cell line MDA-MB 468 as immunogen, we have produced six new rat monoclonal antibodies (mAbs) against the human EGF receptor (EGFR) and are investigating their use for diagnostic and therapeutic applications in cancer patients whose tumours overexpress these receptors. The mAbs (three IgG2b and one each of IgG2a, IgG1 and IgA) were selected on the basis that they bound to the extracellular domain of the EGFR and blocked growth factor-receptor interaction. Competitive assays showed that, with the exception of antibody ICR65, the mAbs bound to one of two distinct epitopes on the external domain of the EGFR. ICR65, however, cross-reacted with mAbs binding to both epitopes. All of the mAbs immunoprecipitated the 170 kDa glycoprotein from cells expressing the EGFR but not the 185 kDa product of the related c-erbB-2 proto-oncogene. Unlike EGF and TGF alpha none of the mAbs stimulated the growth of quiescent human foreskin fibroblasts but they inhibited the EGF and TGF alpha induced growth stimulation of these cells in vitro. When tested for their effect on tumour cells the mAbs were found to inhibit the growth in vitro of a number of human tumours that overexpressed the EGFR (e.g. HN5, HN6, HN15, A431, MDA-MB 468) but they were without effect on tumour cell lines expressing low or undetectable amounts of the receptor. Our initial results indicate that this new generation of antibodies which bind with high affinity to the EGFR, block growth factor-receptor interaction and inhibit the growth of human squamous carcinoma cell lines overexpressing the receptor have potential for clinical application.

Full text

PDF
248

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bazin H., Xhurdebise L. M., Burtonboy G., Lebacq A. M., De Clercq L., Cormont F. Rat monoclonal antibodies. I. Rapid purification from in vitro culture supernatants. J Immunol Methods. 1984 Feb 10;66(2):261–269. doi: 10.1016/0022-1759(84)90337-5. [DOI] [PubMed] [Google Scholar]
  2. Dean C. J., Styles J. M., Gyure L. A., Peppard J., Hobbs S. M., Jackson E., Hall J. G. The production of hybridomas from the gut associated lymphoid tissue of tumour bearing rats. I. Mesenteric nodes as a source of IgG producing cells. Clin Exp Immunol. 1984 Aug;57(2):358–364. [PMC free article] [PubMed] [Google Scholar]
  3. Derynck R., Goeddel D. V., Ullrich A., Gutterman J. U., Williams R. D., Bringman T. S., Berger W. H. Synthesis of messenger RNAs for transforming growth factors alpha and beta and the epidermal growth factor receptor by human tumors. Cancer Res. 1987 Feb 1;47(3):707–712. [PubMed] [Google Scholar]
  4. Derynck R. Transforming growth factor-alpha. Mol Reprod Dev. 1990 Sep;27(1):3–9. doi: 10.1002/mrd.1080270104. [DOI] [PubMed] [Google Scholar]
  5. Di Fiore P. P., Pierce J. H., Fleming T. P., Hazan R., Ullrich A., King C. R., Schlessinger J., Aaronson S. A. Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell. 1987 Dec 24;51(6):1063–1070. doi: 10.1016/0092-8674(87)90592-7. [DOI] [PubMed] [Google Scholar]
  6. Dyer M. J., Hale G., Hayhoe F. G., Waldmann H. Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood. 1989 May 1;73(6):1431–1439. [PubMed] [Google Scholar]
  7. Ennis B. W., Valverius E. M., Bates S. E., Lippman M. E., Bellot F., Kris R., Schlessinger J., Masui H., Goldenberg A., Mendelsohn J. Anti-epidermal growth factor receptor antibodies inhibit the autocrine-stimulated growth of MDA-468 human breast cancer cells. Mol Endocrinol. 1989 Nov;3(11):1830–1838. doi: 10.1210/mend-3-11-1830. [DOI] [PubMed] [Google Scholar]
  8. Fendly B. M., Winget M., Hudziak R. M., Lipari M. T., Napier M. A., Ullrich A. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res. 1990 Mar 1;50(5):1550–1558. [PubMed] [Google Scholar]
  9. Filmus J., Pollak M. N., Cailleau R., Buick R. N. MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited by EGF. Biochem Biophys Res Commun. 1985 Apr 30;128(2):898–905. doi: 10.1016/0006-291x(85)90131-7. [DOI] [PubMed] [Google Scholar]
  10. Filmus J., Trent J. M., Pollak M. N., Buick R. N. Epidermal growth factor receptor gene-amplified MDA-468 breast cancer cell line and its nonamplified variants. Mol Cell Biol. 1987 Jan;7(1):251–257. doi: 10.1128/mcb.7.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  12. Gullick W. J., Marsden J. J., Whittle N., Ward B., Bobrow L., Waterfield M. D. Expression of epidermal growth factor receptors on human cervical, ovarian, and vulval carcinomas. Cancer Res. 1986 Jan;46(1):285–292. [PubMed] [Google Scholar]
  13. Gullick W. J. Prevalence of aberrant expression of the epidermal growth factor receptor in human cancers. Br Med Bull. 1991 Jan;47(1):87–98. doi: 10.1093/oxfordjournals.bmb.a072464. [DOI] [PubMed] [Google Scholar]
  14. Hale G., Clark M., Waldmann H. Therapeutic potential of rat monoclonal antibodies: isotype specificity of antibody-dependent cell-mediated cytotoxicity with human lymphocytes. J Immunol. 1985 May;134(5):3056–3061. [PubMed] [Google Scholar]
  15. Hendler F. J., Ozanne B. W. Human squamous cell lung cancers express increased epidermal growth factor receptors. J Clin Invest. 1984 Aug;74(2):647–651. doi: 10.1172/JCI111463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lindmo T., Boven E., Cuttitta F., Fedorko J., Bunn P. A., Jr Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods. 1984 Aug 3;72(1):77–89. doi: 10.1016/0022-1759(84)90435-6. [DOI] [PubMed] [Google Scholar]
  17. Livneh E., Prywes R., Kashles O., Reiss N., Sasson I., Mory Y., Ullrich A., Schlessinger J. Reconstitution of human epidermal growth factor receptors and its deletion mutants in cultured hamster cells. J Biol Chem. 1986 Sep 25;261(27):12490–12497. [PubMed] [Google Scholar]
  18. Mendelsohn J. Anti-EGF receptor monoclonal antibodies: biological studies and potential clinical applications. Trans Am Clin Climatol Assoc. 1989;100:31–38. [PMC free article] [PubMed] [Google Scholar]
  19. Morishige K., Kurachi H., Amemiya K., Fujita Y., Yamamoto T., Miyake A., Tanizawa O. Evidence for the involvement of transforming growth factor alpha and epidermal growth factor receptor autocrine growth mechanism in primary human ovarian cancers in vitro. Cancer Res. 1991 Oct 1;51(19):5322–5328. [PubMed] [Google Scholar]
  20. Murthy U., Basu A., Rodeck U., Herlyn M., Ross A. H., Das M. Binding of an antagonistic monoclonal antibody to an intact and fragmented EGF-receptor polypeptide. Arch Biochem Biophys. 1987 Feb 1;252(2):549–560. doi: 10.1016/0003-9861(87)90062-2. [DOI] [PubMed] [Google Scholar]
  21. Nistér M., Libermann T. A., Betsholtz C., Pettersson M., Claesson-Welsh L., Heldin C. H., Schlessinger J., Westermark B. Expression of messenger RNAs for platelet-derived growth factor and transforming growth factor-alpha and their receptors in human malignant glioma cell lines. Cancer Res. 1988 Jul 15;48(14):3910–3918. [PubMed] [Google Scholar]
  22. Ozanne B., Richards C. S., Hendler F., Burns D., Gusterson B. Over-expression of the EGF receptor is a hallmark of squamous cell carcinomas. J Pathol. 1986 May;149(1):9–14. doi: 10.1002/path.1711490104. [DOI] [PubMed] [Google Scholar]
  23. Pellegrini R., Centis F., Martignone S., Mastroianni A., Tagliabue E., Tosi E., Ménard S., Colnaghi M. I. Characterization of a monoclonal antibody directed against the epidermal growth factor receptor binding site. Cancer Immunol Immunother. 1991;34(1):37–42. doi: 10.1007/BF01741322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Santon J. B., Cronin M. T., MacLeod C. L., Mendelsohn J., Masui H., Gill G. N. Effects of epidermal growth factor receptor concentration on tumorigenicity of A431 cells in nude mice. Cancer Res. 1986 Sep;46(9):4701–4705. [PubMed] [Google Scholar]
  25. Sato J. D., Kawamoto T., Le A. D., Mendelsohn J., Polikoff J., Sato G. H. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol Biol Med. 1983 Dec;1(5):511–529. [PubMed] [Google Scholar]
  26. Sato J. D., Le A. D., Kawamoto T. Derivation and assay of biological effects of monoclonal antibodies to epidermal growth factor receptors. Methods Enzymol. 1987;146:63–81. doi: 10.1016/s0076-6879(87)46009-6. [DOI] [PubMed] [Google Scholar]
  27. Schreiber A. B., Lax I., Yarden Y., Eshhar Z., Schlessinger J. Monoclonal antibodies against receptor for epidermal growth factor induce early and delayed effects of epidermal growth factor. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7535–7539. doi: 10.1073/pnas.78.12.7535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sporn M. B., Roberts A. B. Autocrine growth factors and cancer. 1985 Feb 28-Mar 6Nature. 313(6005):745–747. doi: 10.1038/313745a0. [DOI] [PubMed] [Google Scholar]
  29. Styles J. M., Harrison S., Gusterson B. A., Dean C. J. Rat monoclonal antibodies to the external domain of the product of the C-erbB-2 proto-oncogene. Int J Cancer. 1990 Feb 15;45(2):320–324. doi: 10.1002/ijc.2910450219. [DOI] [PubMed] [Google Scholar]
  30. Tateishi M., Ishida T., Mitsudomi T., Kaneko S., Sugimachi K. Immunohistochemical evidence of autocrine growth factors in adenocarcinoma of the human lung. Cancer Res. 1990 Nov 1;50(21):7077–7080. [PubMed] [Google Scholar]
  31. Ullrich A., Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990 Apr 20;61(2):203–212. doi: 10.1016/0092-8674(90)90801-k. [DOI] [PubMed] [Google Scholar]
  32. Velu T. J., Beguinot L., Vass W. C., Willingham M. C., Merlino G. T., Pastan I., Lowy D. R. Epidermal-growth-factor-dependent transformation by a human EGF receptor proto-oncogene. Science. 1987 Dec 4;238(4832):1408–1410. doi: 10.1126/science.3500513. [DOI] [PubMed] [Google Scholar]
  33. Waterfield M. D., Mayes E. L., Stroobant P., Bennet P. L., Young S., Goodfellow P. N., Banting G. S., Ozanne B. A monoclonal antibody to the human epidermal growth factor receptor. J Cell Biochem. 1982;20(2):149–161. doi: 10.1002/jcb.240200207. [DOI] [PubMed] [Google Scholar]
  34. Weber W., Gill G. N., Spiess J. Production of an epidermal growth factor receptor-related protein. Science. 1984 Apr 20;224(4646):294–297. doi: 10.1126/science.6324343. [DOI] [PubMed] [Google Scholar]
  35. Yoshida K., Kyo E., Tsuda T., Tsujino T., Ito M., Niimoto M., Tahara E. EGF and TGF-alpha, the ligands of hyperproduced EGFR in human esophageal carcinoma cells, act as autocrine growth factors. Int J Cancer. 1990 Jan 15;45(1):131–135. doi: 10.1002/ijc.2910450124. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES