Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Nov;176(22):7096–7101. doi: 10.1128/jb.176.22.7096-7101.1994

Molecular cloning and characterization of the aklavinone 11-hydroxylase gene of Streptomyces peucetius subsp. caesius ATCC 27952.

Y S Hong 1, C K Hwang 1, S K Hong 1, Y H Kim 1, J J Lee 1
PMCID: PMC197087  PMID: 7961477

Abstract

The gene encoding aklavinone 11-hydroxylase of Streptomyces peucetius subsp. caesius ATCC 27952 was cloned and sequenced. The deduced amino acid sequence of the gene contains at least two common motifs of well-conserved amino acid sequences of several flavin-type bacterial hydroxylases. The hydroxylase gene is apparently transcribed from a single transcriptional start point. The phenotype of a dnrF mutant generated by gene disruption supports the idea that the dnrF gene encodes aklavinone 11-hydroxylase.

Full text

PDF
7098

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldea M., Claverie-Martín F., Díaz-Torres M. R., Kushner S. R. Transcript mapping using [35S]DNA probes, trichloroacetate solvent and dideoxy sequencing ladders: a rapid method for identification of transcriptional start points. Gene. 1988 May 15;65(1):101–110. doi: 10.1016/0378-1119(88)90421-0. [DOI] [PubMed] [Google Scholar]
  2. Arcamone F., Cassinelli G., Fantini G., Grein A., Orezzi P., Pol C., Spalla C. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol Bioeng. 1969 Nov;11(6):1101–1110. doi: 10.1002/bit.260110607. [DOI] [PubMed] [Google Scholar]
  3. Baylis H. A., Bibb M. J. The nucleotide sequence of a 16S rRNA gene from Streptomyces coelicolor A3(2) Nucleic Acids Res. 1987 Sep 11;15(17):7176–7176. doi: 10.1093/nar/15.17.7176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bibb M. J., Findlay P. R., Johnson M. W. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene. 1984 Oct;30(1-3):157–166. doi: 10.1016/0378-1119(84)90116-1. [DOI] [PubMed] [Google Scholar]
  5. Bierman M., Logan R., O'Brien K., Seno E. T., Rao R. N., Schoner B. E. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene. 1992 Jul 1;116(1):43–49. doi: 10.1016/0378-1119(92)90627-2. [DOI] [PubMed] [Google Scholar]
  6. Binnie C., Warren M., Butler M. J. Cloning and heterologous expression in Streptomyces lividans of Streptomyces rimosus genes involved in oxytetracycline biosynthesis. J Bacteriol. 1989 Feb;171(2):887–895. doi: 10.1128/jb.171.2.887-895.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blanco G., Pereda A., Brian P., Méndez C., Chater K. F., Salas J. A. A hydroxylase-like gene product contributes to synthesis of a polyketide spore pigment in Streptomyces halstedii. J Bacteriol. 1993 Dec;175(24):8043–8048. doi: 10.1128/jb.175.24.8043-8048.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blanco G., Pereda A., Méndez C., Salas J. A. Cloning and disruption of a fragment of Streptomyces halstedii DNA involved in the biosynthesis of a spore pigment. Gene. 1992 Mar 1;112(1):59–65. doi: 10.1016/0378-1119(92)90303-7. [DOI] [PubMed] [Google Scholar]
  9. Boucek R. J., Jr, Olson R. D., Brenner D. E., Ogunbunmi E. M., Inui M., Fleischer S. The major metabolite of doxorubicin is a potent inhibitor of membrane-associated ion pumps. A correlative study of cardiac muscle with isolated membrane fractions. J Biol Chem. 1987 Nov 25;262(33):15851–15856. [PubMed] [Google Scholar]
  10. Colombo A. L., Solinas M. M., Perini G., Biamonti G., Zanella G., Caruso M., Torti F., Filippini S., Inventi-Solari A., Garofano L. Expression of doxorubicin-daunorubicin resistance genes in different anthracycline-producing mutants of Streptomyces peucetius. J Bacteriol. 1992 Mar;174(5):1641–1646. doi: 10.1128/jb.174.5.1641-1646.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Decker H., Motamedi H., Hutchinson C. R. Nucleotide sequences and heterologous expression of tcmG and tcmP, biosynthetic genes for tetracenomycin C in Streptomyces glaucescens. J Bacteriol. 1993 Jun;175(12):3876–3886. doi: 10.1128/jb.175.12.3876-3886.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dekleva M. L., Titus J. A., Strohl W. R. Nutrient effects on anthracycline production by Streptomyces peucetius in a defined medium. Can J Microbiol. 1985 Mar;31(3):287–294. doi: 10.1139/m85-053. [DOI] [PubMed] [Google Scholar]
  13. Denis F., Brzezinski R. An improved aminoglycoside resistance gene cassette for use in gram-negative bacteria and Streptomyces. FEMS Microbiol Lett. 1991 Jul 1;65(3):261–264. doi: 10.1016/0378-1097(91)90224-x. [DOI] [PubMed] [Google Scholar]
  14. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Eckardt K., Schumann G., Tresselt D., Ihn W. Biosynthesis of anthracyclinones: isolation of a new early cyclization product aklaviketone. J Antibiot (Tokyo) 1988 Jun;41(6):788–793. doi: 10.7164/antibiotics.41.788. [DOI] [PubMed] [Google Scholar]
  16. Eggink G., Engel H., Vriend G., Terpstra P., Witholt B. Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. J Mol Biol. 1990 Mar 5;212(1):135–142. doi: 10.1016/0022-2836(90)90310-I. [DOI] [PubMed] [Google Scholar]
  17. Grein A. Antitumor anthracyclines produced by Streptomyces peucetius. Adv Appl Microbiol. 1987;32:203–214. doi: 10.1016/s0065-2164(08)70081-9. [DOI] [PubMed] [Google Scholar]
  18. Guilfoile P. G., Hutchinson C. R. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8553–8557. doi: 10.1073/pnas.88.19.8553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Madduri K., Torti F., Colombo A. L., Hutchinson C. R. Cloning and sequencing of a gene encoding carminomycin 4-O-methyltransferase from Streptomyces peucetius and its expression in Escherichia coli. J Bacteriol. 1993 Jun;175(12):3900–3904. doi: 10.1128/jb.175.12.3900-3904.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Neal R. J., Chater K. F. Bidirectional promoter and terminator regions bracket mmr, a resistance gene embedded in the Streptomyces coelicolor A3(2) gene cluster encoding methylenomycin production. Gene. 1991 Apr;100:75–83. doi: 10.1016/0378-1119(91)90352-c. [DOI] [PubMed] [Google Scholar]
  21. Otten S. L., Stutzman-Engwall K. J., Hutchinson C. R. Cloning and expression of daunorubicin biosynthesis genes from Streptomyces peucetius and S. peucetius subsp. caesius. J Bacteriol. 1990 Jun;172(6):3427–3434. doi: 10.1128/jb.172.6.3427-3434.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Perkins E. J., Gordon M. P., Caceres O., Lurquin P. F. Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol. 1990 May;172(5):2351–2359. doi: 10.1128/jb.172.5.2351-2359.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Russel M., Model P. Sequence of thioredoxin reductase from Escherichia coli. Relationship to other flavoprotein disulfide oxidoreductases. J Biol Chem. 1988 Jun 25;263(18):9015–9019. [PubMed] [Google Scholar]
  24. Stein D. S., Kendall K. J., Cohen S. N. Identification and analysis of transcriptional regulatory signals for the kil and kor loci of Streptomyces plasmid pIJ101. J Bacteriol. 1989 Nov;171(11):5768–5775. doi: 10.1128/jb.171.11.5768-5775.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Strohl W. R., Bartel P. L., Li Y., Connors N. C., Woodman R. H. Expression of polyketide biosynthesis and regulatory genes in heterologous streptomycetes. J Ind Microbiol. 1991 Apr;7(3):163–174. doi: 10.1007/BF01575879. [DOI] [PubMed] [Google Scholar]
  26. Strohl W. R. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 1992 Mar 11;20(5):961–974. doi: 10.1093/nar/20.5.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stutzman-Engwall K. J., Hutchinson C. R. Multigene families for anthracycline antibiotic production in Streptomyces peucetius. Proc Natl Acad Sci U S A. 1989 May;86(9):3135–3139. doi: 10.1073/pnas.86.9.3135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stutzman-Engwall K. J., Otten S. L., Hutchinson C. R. Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius. J Bacteriol. 1992 Jan;174(1):144–154. doi: 10.1128/jb.174.1.144-154.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wagner C., Eckardt K., Schumann G., Ihn W., Tresselt D. Microbial transformation of aklanonic acid, a potential early intermediate in the biosynthesis of anthracyclines. J Antibiot (Tokyo) 1984 Jun;37(6):691–692. doi: 10.7164/antibiotics.37.691. [DOI] [PubMed] [Google Scholar]
  30. Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES