Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Apr;60(4):1053–1058. doi: 10.1128/aem.60.4.1053-1058.1994

Denitrification: production and consumption of nitric oxide.

R W Ye 1, B A Averill 1, J M Tiedje 1
PMCID: PMC201439  PMID: 8017903

Full text

PDF
1054

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aerssens E., Tiedje J. M., Averill B. A. Isotope labeling studies on the mechanism of N-N bond formation in denitrification. J Biol Chem. 1986 Jul 25;261(21):9652–9656. [PubMed] [Google Scholar]
  2. Arai H., Igarashi Y., Kodama T. Nitrite activates the transcription of the Pseudomonas aeruginosa nitrite reductase and cytochrome c-551 operon under anaerobic conditions. FEBS Lett. 1991 Aug 19;288(1-2):227–228. doi: 10.1016/0014-5793(91)81040-f. [DOI] [PubMed] [Google Scholar]
  3. Arai H., Sanbongi Y., Igarashi Y., Kodama T. Cloning and sequencing of the gene encoding cytochrome c-551 from Pseudomonas aeruginosa. FEBS Lett. 1990 Feb 12;261(1):196–198. doi: 10.1016/0014-5793(90)80669-a. [DOI] [PubMed] [Google Scholar]
  4. Averill B. A., Tiedje J. M. The chemical mechanism of microbial denitrification. FEBS Lett. 1982 Feb 8;138(1):8–12. doi: 10.1016/0014-5793(82)80383-9. [DOI] [PubMed] [Google Scholar]
  5. Bell L. C., Ferguson S. J. Nitric and nitrous oxide reductases are active under aerobic conditions in cells of Thiosphaera pantotropha. Biochem J. 1991 Jan 15;273(Pt 2):423–427. doi: 10.1042/bj2730423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Betlach M. R., Tiedje J. M. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Appl Environ Microbiol. 1981 Dec;42(6):1074–1084. doi: 10.1128/aem.42.6.1074-1084.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Braun C., Zumft W. G. Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway of Pseudomonas stutzeri at nitric oxide. J Biol Chem. 1991 Dec 5;266(34):22785–22788. [PubMed] [Google Scholar]
  8. Braun C., Zumft W. G. The structural genes of the nitric oxide reductase complex from Pseudomonas stutzeri are part of a 30-kilobase gene cluster for denitrification. J Bacteriol. 1992 Apr;174(7):2394–2397. doi: 10.1128/jb.174.7.2394-2397.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carr G. J., Ferguson S. J. The nitric oxide reductase of Paracoccus denitrificans. Biochem J. 1990 Jul 15;269(2):423–429. doi: 10.1042/bj2690423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Carr G. J., Page M. D., Ferguson S. J. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification. Eur J Biochem. 1989 Feb 15;179(3):683–692. doi: 10.1111/j.1432-1033.1989.tb14601.x. [DOI] [PubMed] [Google Scholar]
  11. Chang C. K., Wu W. The porphinedione structure of heme d1. Synthesis and spectral properties of model compounds of the prosthetic group of dissimilatory nitrite reductase. J Biol Chem. 1986 Jul 5;261(19):8593–8596. [PubMed] [Google Scholar]
  12. Coyne M. S., Arunakumari A., Averill B. A., Tiedje J. M. Immunological identification and distribution of dissimilatory heme cd1 and nonheme copper nitrite reductases in denitrifying bacteria. Appl Environ Microbiol. 1989 Nov;55(11):2924–2931. doi: 10.1128/aem.55.11.2924-2931.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cuypers H., Viebrock-Sambale A., Zumft W. G. NosR, a membrane-bound regulatory component necessary for expression of nitrous oxide reductase in denitrifying Pseudomonas stutzeri. J Bacteriol. 1992 Aug;174(16):5332–5339. doi: 10.1128/jb.174.16.5332-5339.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dermastia M., Turk T., Hollocher T. C. Nitric oxide reductase. Purification from Paracoccus denitrificans with use of a single column and some characteristics. J Biol Chem. 1991 Jun 15;266(17):10899–10905. [PubMed] [Google Scholar]
  15. Fenderson F. F., Kumar S., Adman E. T., Liu M. Y., Payne W. J., LeGall J. Amino acid sequence of nitrite reductase: a copper protein from Achromobacter cycloclastes. Biochemistry. 1991 Jul 23;30(29):7180–7185. doi: 10.1021/bi00243a020. [DOI] [PubMed] [Google Scholar]
  16. Firestone M. K., Firestone R. B., Tiedje J. M. Nitric oxide as an intermediate in denitrification: evidence from nitrogen-13 isotope exchange. Biochem Biophys Res Commun. 1979 Nov 14;91(1):10–16. doi: 10.1016/0006-291x(79)90575-8. [DOI] [PubMed] [Google Scholar]
  17. Galimand M., Gamper M., Zimmermann A., Haas D. Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa. J Bacteriol. 1991 Mar;173(5):1598–1606. doi: 10.1128/jb.173.5.1598-1606.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gamble T. N., Betlach M. R., Tiedje J. M. Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol. 1977 Apr;33(4):926–939. doi: 10.1128/aem.33.4.926-939.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gamper M., Zimmermann A., Haas D. Anaerobic regulation of transcription initiation in the arcDABC operon of Pseudomonas aeruginosa. J Bacteriol. 1991 Aug;173(15):4742–4750. doi: 10.1128/jb.173.15.4742-4750.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Garber E. A., Hollocher T. C. 15N tracer studies on the role of NO in denitrification. J Biol Chem. 1981 Jun 10;256(11):5459–5465. [PubMed] [Google Scholar]
  21. Garber E. A., Hollocher T. C. 15N,18O tracer studies on the activation of nitrite by denitrifying bacteria. Nitrite/water-oxygen exchange and nitrosation reactions as indicators of electrophilic catalysis. J Biol Chem. 1982 Jul 25;257(14):8091–8097. [PubMed] [Google Scholar]
  22. Glockner A. B., Jüngst A., Zumft W. G. Copper-containing nitrite reductase from Pseudomonas aureofaciens is functional in a mutationally cytochrome cd1-free background (NirS-) of Pseudomonas stutzeri. Arch Microbiol. 1993;160(1):18–26. doi: 10.1007/BF00258141. [DOI] [PubMed] [Google Scholar]
  23. Godden J. W., Turley S., Teller D. C., Adman E. T., Liu M. Y., Payne W. J., LeGall J. The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science. 1991 Jul 26;253(5018):438–442. doi: 10.1126/science.1862344. [DOI] [PubMed] [Google Scholar]
  24. Goretski J., Hollocher T. C. The kinetic and isotopic competence of nitric oxide as an intermediate in denitrification. J Biol Chem. 1990 Jan 15;265(2):889–895. [PubMed] [Google Scholar]
  25. Goretski J., Hollocher T. C. Trapping of nitric oxide produced during denitrification by extracellular hemoglobin. J Biol Chem. 1988 Feb 15;263(5):2316–2323. [PubMed] [Google Scholar]
  26. Goretski J., Zafiriou O. C., Hollocher T. C. Steady-state nitric oxide concentrations during denitrification. J Biol Chem. 1990 Jul 15;265(20):11535–11538. [PubMed] [Google Scholar]
  27. Heiss B., Frunzke K., Zumft W. G. Formation of the N-N bond from nitric oxide by a membrane-bound cytochrome bc complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri. J Bacteriol. 1989 Jun;171(6):3288–3297. doi: 10.1128/jb.171.6.3288-3297.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hochstein L. I., Tomlinson G. A. The enzymes associated with denitrification. Annu Rev Microbiol. 1988;42:231–261. doi: 10.1146/annurev.mi.42.100188.001311. [DOI] [PubMed] [Google Scholar]
  29. Hoglen J., Hollocher T. C. Purification and some characteristics of nitric oxide reductase-containing vesicles from Paracoccus denitrificans. J Biol Chem. 1989 May 5;264(13):7556–7563. [PubMed] [Google Scholar]
  30. Hoitink C. W., Woudt L. P., Turenhout J. C., van de Kamp M., Canters G. W. Isolation and sequencing of the Alcaligenes denitrificans azurin-encoding gene: comparison with the genes encoding blue copper proteins from Pseudomonas aeruginosa and Alcaligenes faecalis. Gene. 1990 May 31;90(1):15–20. doi: 10.1016/0378-1119(90)90434-s. [DOI] [PubMed] [Google Scholar]
  31. Hutchins S. R. Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor. Appl Environ Microbiol. 1991 Aug;57(8):2403–2407. doi: 10.1128/aem.57.8.2403-2407.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Jüngst A., Wakabayashi S., Matsubara H., Zumft W. G. The nirSTBM region coding for cytochrome cd1-dependent nitrite respiration of Pseudomonas stutzeri consists of a cluster of mono-, di-, and tetraheme proteins. FEBS Lett. 1991 Feb 25;279(2):205–209. doi: 10.1016/0014-5793(91)80150-2. [DOI] [PubMed] [Google Scholar]
  33. Jüngst A., Zumft W. G. Interdependence of respiratory NO reduction and nitrite reduction revealed by mutagenesis of nirQ, a novel gene in the denitrification gene cluster of Pseudomonas stutzeri. FEBS Lett. 1992 Dec 21;314(3):308–314. doi: 10.1016/0014-5793(92)81495-8. [DOI] [PubMed] [Google Scholar]
  34. Kim C. H., Hollocher T. C. Catalysis of nitrosyl transfer reactions by a dissimilatory nitrite reductase (cytochrome c,d1). J Biol Chem. 1984 Feb 25;259(4):2092–2099. [PubMed] [Google Scholar]
  35. Koshland D. E., Jr The molecule of the year. Science. 1992 Dec 18;258(5090):1861–1861. doi: 10.1126/science.1470903. [DOI] [PubMed] [Google Scholar]
  36. Libby E., Averill B. A. Evidence that the type 2 copper centers are the site of nitrite reduction by Achromobacter cycloclastes nitrite reductase. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1529–1535. doi: 10.1016/0006-291x(92)90476-2. [DOI] [PubMed] [Google Scholar]
  37. Ludwig W., Mittenhuber G., Friedrich C. G. Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int J Syst Bacteriol. 1993 Apr;43(2):363–367. doi: 10.1099/00207713-43-2-363. [DOI] [PubMed] [Google Scholar]
  38. Masuko M., Iwasaki H., Sakurai T., Suzuki S., Nakahara A. Characterization of nitrite reductase from a denitrifier, Alcaligenes sp. NCIB 11015. A novel copper protein. J Biochem. 1984 Aug;96(2):447–454. doi: 10.1093/oxfordjournals.jbchem.a134856. [DOI] [PubMed] [Google Scholar]
  39. Nordling M., Young S., Karlsson B. G., Lundberg L. G. The structural gene for cytochrome c551 from Pseudomonas aeruginosa. The nucleotide sequence shows a location downstream of the nitrite reductase gene. FEBS Lett. 1990 Jan 1;259(2):230–232. doi: 10.1016/0014-5793(90)80015-b. [DOI] [PubMed] [Google Scholar]
  40. Payne W. J. Reduction of nitrogenous oxides by microorganisms. Bacteriol Rev. 1973 Dec;37(4):409–452. doi: 10.1128/br.37.4.409-452.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rasmussen R. A., Khalil M. A. Atmospheric trace gases: trends and distributions over the last decade. Science. 1986 Jun 27;232(4758):1623–1624. doi: 10.1126/science.232.4758.1623. [DOI] [PubMed] [Google Scholar]
  42. Sawers R. G. Identification and molecular characterization of a transcriptional regulator from Pseudomonas aeruginosa PAO1 exhibiting structural and functional similarity to the FNR protein of Escherichia coli. Mol Microbiol. 1991 Jun;5(6):1469–1481. doi: 10.1111/j.1365-2958.1991.tb00793.x. [DOI] [PubMed] [Google Scholar]
  43. Shapleigh J. P., Davies K. J., Payne W. J. Detergent inhibition of nitric-oxide reductase activity. Biochim Biophys Acta. 1987 Feb 25;911(3):334–340. doi: 10.1016/0167-4838(87)90074-4. [DOI] [PubMed] [Google Scholar]
  44. Shapleigh J. P., Payne W. J. Nitric oxide-dependent proton translocation in various denitrifiers. J Bacteriol. 1985 Sep;163(3):837–840. doi: 10.1128/jb.163.3.837-840.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Silvestrini M. C., Galeotti C. L., Gervais M., Schininà E., Barra D., Bossa F., Brunori M. Nitrite reductase from Pseudomonas aeruginosa: sequence of the gene and the protein. FEBS Lett. 1989 Aug 28;254(1-2):33–38. doi: 10.1016/0014-5793(89)81004-x. [DOI] [PubMed] [Google Scholar]
  46. Smith G. B., Tiedje J. M. Isolation and characterization of a nitrite reductase gene and its use as a probe for denitrifying bacteria. Appl Environ Microbiol. 1992 Jan;58(1):376–384. doi: 10.1128/aem.58.1.376-384.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Spiro S., Guest J. R. FNR and its role in oxygen-regulated gene expression in Escherichia coli. FEMS Microbiol Rev. 1990 Aug;6(4):399–428. doi: 10.1111/j.1574-6968.1990.tb04109.x. [DOI] [PubMed] [Google Scholar]
  48. Stamler J. S., Singel D. J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992 Dec 18;258(5090):1898–1902. doi: 10.1126/science.1281928. [DOI] [PubMed] [Google Scholar]
  49. Suzuki S., Yoshimura T., Kohzuma T., Shidara S., Masuko M., Sakurai T., Iwasaki H. Spectroscopic evidence for a copper-nitrosyl intermediate in nitrite reduction by blue copper-containing nitrite reductase. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1366–1372. doi: 10.1016/0006-291x(89)91820-2. [DOI] [PubMed] [Google Scholar]
  50. Turk T., Hollocher T. C. Oxidation of dithiothreitol during turnover of nitric oxide reductase: evidence for generation of nitroxyl with the enzyme from Paracoccus denitrificans. Biochem Biophys Res Commun. 1992 Mar 31;183(3):983–988. doi: 10.1016/s0006-291x(05)80287-6. [DOI] [PubMed] [Google Scholar]
  51. Viebrock A., Zumft W. G. Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri. J Bacteriol. 1988 Oct;170(10):4658–4668. doi: 10.1128/jb.170.10.4658-4668.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Weeg-Aerssens E., Wu W. S., Ye R. W., Tiedje J. M., Chang C. K. Purification of cytochrome cd1 nitrite reductase from Pseudomonas stutzeri JM300 and reconstitution with native and synthetic heme d1. J Biol Chem. 1991 Apr 25;266(12):7496–7502. [PubMed] [Google Scholar]
  53. Ye R. W., Arunakumari A., Averill B. A., Tiedje J. M. Mutants of Pseudomonas fluorescens deficient in dissimilatory nitrite reduction are also altered in nitric oxide reduction. J Bacteriol. 1992 Apr;174(8):2560–2564. doi: 10.1128/jb.174.8.2560-2564.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Ye R. W., Averill B. A., Tiedje J. M. Characterization of Tn5 mutants deficient in dissimilatory nitrite reduction in Pseudomonas sp. strain G-179, which contains a copper nitrite reductase. J Bacteriol. 1992 Oct;174(20):6653–6658. doi: 10.1128/jb.174.20.6653-6658.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Ye R. W., Fries M. R., Bezborodnikov S. G., Averill B. A., Tiedje J. M. Characterization of the structural gene encoding a copper-containing nitrite reductase and homology of this gene to DNA of other denitrifiers. Appl Environ Microbiol. 1993 Jan;59(1):250–254. doi: 10.1128/aem.59.1.250-254.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Ye R. W., Toro-Suarez I., Tiedje J. M., Averill B. A. H218O isotope exchange studies on the mechanism of reduction of nitric oxide and nitrite to nitrous oxide by denitrifying bacteria. Evidence for an electrophilic nitrosyl during reduction of nitric oxide. J Biol Chem. 1991 Jul 15;266(20):12848–12851. [PubMed] [Google Scholar]
  57. Zafiriou O. C., Hanley Q. S., Snyder G. Nitric oxide and nitrous oxide production and cycling during dissimilatory nitrite reduction by Pseudomonas perfectomarina. J Biol Chem. 1989 Apr 5;264(10):5694–5699. [PubMed] [Google Scholar]
  58. Zimmermann A., Reimmann C., Galimand M., Haas D. Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with fnr of Escherichia coli. Mol Microbiol. 1991 Jun;5(6):1483–1490. doi: 10.1111/j.1365-2958.1991.tb00794.x. [DOI] [PubMed] [Google Scholar]
  59. Zumft W. G., Döhler K., Körner H., Löchelt S., Viebrock A., Frunzke K. Defects in cytochrome cd1-dependent nitrite respiration of transposon Tn5-induced mutants from Pseudomonas stutzeri. Arch Microbiol. 1988;149(6):492–498. doi: 10.1007/BF00446750. [DOI] [PubMed] [Google Scholar]
  60. Zumft W. G., Frunzke K. Discrimination of ascorbate-dependent nonenzymatic and enzymatic, membrane-bound reduction of nitric oxide in denitrifying Pseudomonas perfectomarinus. Biochim Biophys Acta. 1982 Sep 15;681(3):459–468. doi: 10.1016/0005-2728(82)90188-8. [DOI] [PubMed] [Google Scholar]
  61. Zumft W. G., Gotzmann D. J., Kroneck P. M. Type 1, blue copper proteins constitute a respiratory nitrite-reducing system in Pseudomonas aureofaciens. Eur J Biochem. 1987 Oct 15;168(2):301–307. doi: 10.1111/j.1432-1033.1987.tb13421.x. [DOI] [PubMed] [Google Scholar]
  62. Zumft W. G. The biological role of nitric oxide in bacteria. Arch Microbiol. 1993;160(4):253–264. doi: 10.1007/BF00292074. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES