Abstract
A modification of the second-order model for biodegradation was derived, applied to an example data set, and shown to be superior for describing the anaerobic biodegradation of p-cresol by an enriched bacterial consortium. The modified model circumvents the no-growth assumption implicit in the use of the second-order rate equation, but still requires the assumption of first-order kinetics over the course of substrate depletion. Violation of the no-growth assumption is particularly important since overestimates of the pseudo-first-order rate coefficient lead to underestimates of the time required for the removal of a xenobiotic chemical from a contaminated environment. Our calculations show that the errors introduced into the pseudo-first-order rate coefficient (and the resulting estimates of the second-order rate coefficient) approach 100% if one doubling occurs in activity over the course of substrate depletion. For an exemplary data set, use of a first-order model resulted in a 100% overestimate of the first-order decay coefficient, which would in turn lead to a corresponding overestimate of the second-order rate coefficient. The modified model we describe is a potential alternative to the pseudo-first-order model for the routine estimation of second-order rate coefficients.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cleveland W. S., McGill R. Graphical perception and graphical methods for analyzing scientific data. Science. 1985 Aug 30;229(4716):828–833. doi: 10.1126/science.229.4716.828. [DOI] [PubMed] [Google Scholar]
- Paris D. F., Rogers J. E. Kinetic concepts for measuring microbial rate constants: effects of nutrients on rate constants. Appl Environ Microbiol. 1986 Feb;51(2):221–225. doi: 10.1128/aem.51.2.221-225.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paris D. F., Steen W. C., Baughman G. L., Barnett J. T. Second-order model to predict microbial degradation of organic compounds in natural waters. Appl Environ Microbiol. 1981 Mar;41(3):603–609. doi: 10.1128/aem.41.3.603-609.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paris D. F., Wolfe N. L., Steen W. C. Structure-activity relationships in microbial transformation of phenols. Appl Environ Microbiol. 1982 Jul;44(1):153–158. doi: 10.1128/aem.44.1.153-158.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson J. A., Tiedje J. M. Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve. Appl Environ Microbiol. 1983 May;45(5):1453–1458. doi: 10.1128/aem.45.5.1453-1458.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt S. K., Simkins S., Alexander M. Models for the kinetics of biodegradation of organic compounds not supporting growth. Appl Environ Microbiol. 1985 Aug;50(2):323–331. doi: 10.1128/aem.50.2.323-331.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shelton D. R., Tiedje J. M. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic Acid. Appl Environ Microbiol. 1984 Oct;48(4):840–848. doi: 10.1128/aem.48.4.840-848.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simkins S., Alexander M. Models for mineralization kinetics with the variables of substrate concentration and population density. Appl Environ Microbiol. 1984 Jun;47(6):1299–1306. doi: 10.1128/aem.47.6.1299-1306.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simkins S., Alexander M. Nonlinear estimation of the parameters of Monod kinetics that best describe mineralization of several substrate concentrations by dissimilar bacterial densities. Appl Environ Microbiol. 1985 Oct;50(4):816–824. doi: 10.1128/aem.50.4.816-824.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simkins S., Mukherjee R., Alexander M. Two approaches to modeling kinetics of biodegradation by growing cells and application of a two-compartment model for mineralization kinetics in sewage. Appl Environ Microbiol. 1986 Jun;51(6):1153–1160. doi: 10.1128/aem.51.6.1153-1160.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]