Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 Apr;172(4):1703–1710. doi: 10.1128/jb.172.4.1703-1710.1990

Binding-protein-dependent lactose transport in Agrobacterium radiobacter.

J A Greenwood 1, A Cornish 1, C W Jones 1
PMCID: PMC208659  PMID: 2318800

Abstract

Agrobacterium radiobacter NCIB 11883 was grown in lactose-limited continuous culture at a dilution rate of 0.045/h. Washed cells transported [14C]lactose and [methyl-14C]beta-D-thiogalactoside, a nonmetabolisable analog of lactose, at similar rates and with similar affinities (Km for transport, less than 1 microM). Transport was inhibited to various extents by the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, by unlabeled beta-galactosides and D-galactose, and by osmotic shock. The accumulation ratio for methyl-beta-D-thiogalactoside was greater than or equal to 4,100. An abundant protein (molecular weight, 41,000) was purified from osmotic-shock fluid and shown by equilibrium dialysis to bind lactose and methyl-beta-D-thiogalactoside, the former with very high affinity (binding constant, 0.14 microM). The N-terminal amino acid sequence of this lactose-binding protein exhibited some homology with several other sugar-binding proteins from bacteria. Antiserum raised against the lactose-binding protein did not cross-react with two glucose-binding proteins from A. radiobacter or with extracts of other bacteria grown under lactose limitation. Lactose transport and beta-galactosidase were induced in batch cultures by lactose, melibiose [O-alpha-D-galactoside-(1----6)alpha-D-glucose], and isopropyl-beta-D-thiogalactoside and were subject to catabolite repression by glucose, galactose, and succinate which was not alleviated by cyclic AMP. We conclude that lactose is transported into A. radiobacter via a binding protein-dependent active transport system (in contrast to the H+ symport and phosphotransferase systems found in other bacteria) and that the expression of this transport system is closely linked to that of beta-galactosidase.

Full text

PDF
1703

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F. Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem. 1986;55:397–425. doi: 10.1146/annurev.bi.55.070186.002145. [DOI] [PubMed] [Google Scholar]
  2. Argos P., Mahoney W. C., Hermodson M. A., Hanei M. Structural prediction of sugar-binding proteins functional in chemotaxis and transport. J Biol Chem. 1981 May 10;256(9):4357–4361. [PubMed] [Google Scholar]
  3. Chassy B. M., Thompson J. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei. J Bacteriol. 1983 Jun;154(3):1195–1203. doi: 10.1128/jb.154.3.1195-1203.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cornish A., Greenwood J. A., Jones C. W. Binding-protein-dependent glucose transport by Agrobacterium radiobacter grown in glucose-limited continuous culture. J Gen Microbiol. 1988 Dec;134(12):3099–3110. doi: 10.1099/00221287-134-12-3099. [DOI] [PubMed] [Google Scholar]
  5. Cornish A., Greenwood J. A., Jones C. W. Binding-protein-dependent sugar transport by Agrobacterium radiobacter and A. tumefaciens grown in continuous culture. J Gen Microbiol. 1989 Nov;135(11):3001–3013. doi: 10.1099/00221287-135-11-3001. [DOI] [PubMed] [Google Scholar]
  6. Cornish A., Greenwood J. A., Jones C. W. The relationship between glucose transport and the production of succinoglucan exopolysaccharide by Agrobacterium radiobacter. J Gen Microbiol. 1988 Dec;134(12):3111–3122. doi: 10.1099/00221287-134-12-3111. [DOI] [PubMed] [Google Scholar]
  7. DE LEY J., DOUDOROFF M. The metabolism of D-galactose in Pseudomonas saccharophila. J Biol Chem. 1957 Aug;227(2):745–757. [PubMed] [Google Scholar]
  8. Deshusses J., Belet M. Purification and properties of the myo-inositol-binding protein from a Pseudomonas sp. J Bacteriol. 1984 Jul;159(1):179–183. doi: 10.1128/jb.159.1.179-183.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dickson R. C., Abelson J., Barnes W. M., Reznikoff W. S. Genetic regulation: the Lac control region. Science. 1975 Jan 10;187(4171):27–35. doi: 10.1126/science.1088926. [DOI] [PubMed] [Google Scholar]
  10. Higgins C. F., Hiles I. D., Salmond G. P., Gill D. R., Downie J. A., Evans I. J., Holland I. B., Gray L., Buckel S. D., Bell A. W. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature. 1986 Oct 2;323(6087):448–450. doi: 10.1038/323448a0. [DOI] [PubMed] [Google Scholar]
  11. Kaback H. R. Site-directed mutagenesis and ion-gradient driven active transport: on the path of the proton. Annu Rev Physiol. 1988;50:243–256. doi: 10.1146/annurev.ph.50.030188.001331. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965 Sep;240(9):3685–3692. [PubMed] [Google Scholar]
  14. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES