Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 Jun;169(6):2611–2617. doi: 10.1128/jb.169.6.2611-2617.1987

Genetic characterization of a highly efficient alternate pathway of serine biosynthesis in Escherichia coli.

P D Ravnikar, R L Somerville
PMCID: PMC212135  PMID: 3108237

Abstract

There exists in Escherichia coli a known set of enzymes that were shown to function in an efficient and concerted way to convert threonine to serine. The sequence of reactions catalyzed by these enzymes is designated the Tut cycle (threonine utilization). To demonstrate that the relevant genes and their protein products play essential roles in serine biosynthesis, a number of mutants were analyzed. Strains of E. coli with lesions in serA, serB, serC, or glyA grew readily on minimal medium supplemented with elevated levels of leucine, arginine, lysine, threonine, and methionine. No growth on this medium was observed upon testing double mutants with lesions in one of the known ser genes plus a second lesion in glyA (serine hydroxymethyltransferase), gcv (the glycine cleavage system), or tdh (threonine dehydrogenase). Pseudorevertants of ser mutants capable of growth on either unsupplemented minimal medium or medium supplemented with low levels of leucine, arginine, lysine, threonine, and methionine were isolated. At least two unlinked mutations were associated with such phenotypes.

Full text

PDF
2611

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUSTON H. W., CHURCHMAN J., BISHOP J. Synthetic alpha-amino-beta-hydroxyvaleric acids. J Biol Chem. 1953 Oct;204(2):665–668. [PubMed] [Google Scholar]
  2. Bachmann B. J. Linkage map of Escherichia coli K-12, edition 7. Microbiol Rev. 1983 Jun;47(2):180–230. doi: 10.1128/mr.47.2.180-230.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bogosian G., Bertrand K., Somerville R. Trp repressor protein controls its own structural gene. J Mol Biol. 1981 Jul 15;149(4):821–825. doi: 10.1016/0022-2836(81)90361-2. [DOI] [PubMed] [Google Scholar]
  4. Boylan S. A., Dekker E. E. L-threonine dehydrogenase. Purification and properties of the homogeneous enzyme from Escherichia coli K-12. J Biol Chem. 1981 Feb 25;256(4):1809–1815. [PubMed] [Google Scholar]
  5. Clarke S. J., Low B., Konigsberg W. H. Close linkage of the genes serC (for phosphohydroxy pyruvate transaminase) and serS (for seryl-transfer ribonucleic acid synthetase) in Escherichia coli K-12. J Bacteriol. 1973 Mar;113(3):1091–1095. doi: 10.1128/jb.113.3.1091-1095.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dainty R. H., Peel J. L. Biosynthesis of amino acids in Clostridium pasteurianum. Biochem J. 1970 Apr;117(3):573–584. doi: 10.1042/bj1170573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fraser J., Newman E. B. Derivation of glycine from threonine in Escherichia coli K-12 mutants. J Bacteriol. 1975 Jun;122(3):810–817. doi: 10.1128/jb.122.3.810-817.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hoffman E. P., Wilhelm R. C., Konigsberg W., Katze J. R. A structural gene for seryl-tRNA synthetase in Escherichia coli K12. J Mol Biol. 1970 Feb 14;47(3):619–625. doi: 10.1016/0022-2836(70)90332-3. [DOI] [PubMed] [Google Scholar]
  9. KARASEK M. A., GREENBERG D. M. Studies on the properties of threonine aldolases. J Biol Chem. 1957 Jul;227(1):191–205. [PubMed] [Google Scholar]
  10. Kikuchi G. The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem. 1973 Jun 27;1(2):169–187. doi: 10.1007/BF01659328. [DOI] [PubMed] [Google Scholar]
  11. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. McGilvray D., Morris J. G. Utilization of L-threonine by a species of Arthrobacter. A novel catabolic role for "aminoacetone synthase". Biochem J. 1969 May;112(5):657–671. doi: 10.1042/bj1120657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McKitrick J. C., Pizer L. I. Regulation of phosphoglycerate dehydrogenase levels and effect on serine synthesis in Escherichia coli K-12. J Bacteriol. 1980 Jan;141(1):235–245. doi: 10.1128/jb.141.1.235-245.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Newman E. B., Kapoor V., Potter R. Role of L-threonine dehydrogenase in the catabolism of threonine and synthesis of glycine by Escherichia coli. J Bacteriol. 1976 Jun;126(3):1245–1249. doi: 10.1128/jb.126.3.1245-1249.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PIZER L. I., POTOCHNY M. L. NUTRITIONAL AND REGULATORY ASPECTS OF SERINE METABOLISM IN ESCHERICHIA COLI. J Bacteriol. 1964 Sep;88:611–619. doi: 10.1128/jb.88.3.611-619.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. PIZER L. I. THE PATHWAY AND CONTROL OF SERINE BIOSYNTHESIS IN ESCHERICHIA COLI. J Biol Chem. 1963 Dec;238:3934–3944. [PubMed] [Google Scholar]
  18. Plamann M. D., Rapp W. D., Stauffer G. V. Escherichia coli K12 mutants defective in the glycine cleavage enzyme system. Mol Gen Genet. 1983;192(1-2):15–20. doi: 10.1007/BF00327641. [DOI] [PubMed] [Google Scholar]
  19. Potter R., Kapoor V., Newman E. B. Role of threonine dehydrogenase in Escherichia coli threonine degradation. J Bacteriol. 1977 Nov;132(2):385–391. doi: 10.1128/jb.132.2.385-391.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ravnikar P. D., Somerville R. L. Localization of the structural gene for threonine dehydrogenase in Escherichia coli. J Bacteriol. 1986 Oct;168(1):434–436. doi: 10.1128/jb.168.1.434-436.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Roeder W., Somerville R. L. Cloning the trpR gene. Mol Gen Genet. 1979 Nov;176(3):361–368. doi: 10.1007/BF00333098. [DOI] [PubMed] [Google Scholar]
  22. Shimizu S., Dempsey W. B. 3-hydroxypyruvate substitutes for pyridoxine in serC mutants of Escherichia coli K-12. J Bacteriol. 1978 Jun;134(3):944–949. doi: 10.1128/jb.134.3.944-949.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. UMBARGER H. E., UMBARGER M. A., SIU P. M. BIOSYNTHESIS OF SERINE IN ESCHERICHIA COLI AND SALMONELLA TYPHIMURIUM. J Bacteriol. 1963 Jun;85:1431–1439. doi: 10.1128/jb.85.6.1431-1439.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Umbarger H. E. Amino acid biosynthesis and its regulation. Annu Rev Biochem. 1978;47:532–606. doi: 10.1146/annurev.bi.47.070178.002533. [DOI] [PubMed] [Google Scholar]
  25. VANLENTEN E. J., SIMMONDS S. METABOLIC RELATIONS BETWEEN L-THREONINE AND GLYCINE IN ESCHERICHIA COLI. J Biol Chem. 1965 Aug;240:3361–3371. [PubMed] [Google Scholar]
  26. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  27. Winans S. C., Elledge S. J., Krueger J. H., Walker G. C. Site-directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J Bacteriol. 1985 Mar;161(3):1219–1221. doi: 10.1128/jb.161.3.1219-1221.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wong H. C., Lessie T. G. Hydroxy amino acid metabolism in Pseudomonas cepacia: role of L-serine deaminase in dissimilation of serine, glycine, and threonine. J Bacteriol. 1979 Oct;140(1):240–245. doi: 10.1128/jb.140.1.240-245.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES