Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Apr;3(4):588–599. doi: 10.1002/pro.5560030407

Models of the serine protease domain of the human antithrombotic plasma factor activated protein C and its zymogen.

C L Fisher 1, J S Greengard 1, J H Griffin 1
PMCID: PMC2142866  PMID: 8003977

Abstract

Three-dimensional structural analysis of physiologically important serine proteases is useful in identifying functional features relevant to the expression of their activities and specificities. The human serine protease anticoagulant protein C is currently the object of many genetic site-directed mutagenesis studies. Analyzing relationships between its structure and function and between naturally occurring mutations and their corresponding clinical phenotypes would be greatly assisted by a 3-dimensional structure of the enzyme. To this end, molecular models of the protease domain of protein C have been produced using computational techniques based on known crystal structures of homologous enzymes and on protein C functional information. The resultant models corresponding to different stages along the processing pathway of protein C were analyzed for structural and electrostatic differences arising during the process of protein C maturation and activation. The most satisfactory models included a calcium ion bound to residues homologous to those that ligate calcium in the trypsin structure. Inspection of the surface features of the models allowed identification of residues putatively involved in specific functional interactions. In particular, analysis of the electrostatic potential surface of the model delineated a positively charged region likely to represent a novel substrate recognition exosite. To assist with future mutational studies, binding of an octapeptide representing a protein C cleavage site of its substrate factor Va to the enzyme's active site region was modeled and analyzed.

Full Text

The Full Text of this article is available as a PDF (9.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bajaj S. P., Sabharwal A. K., Gorka J., Birktoft J. J. Antibody-probed conformational transitions in the protease domain of human factor IX upon calcium binding and zymogen activation: putative high-affinity Ca(2+)-binding site in the protease domain. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):152–156. doi: 10.1073/pnas.89.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bakker H. M., Tans G., Janssen-Claessen T., Thomassen M. C., Hemker H. C., Griffin J. H., Rosing J. The effect of phospholipids, calcium ions and protein S on rate constants of human factor Va inactivation by activated human protein C. Eur J Biochem. 1992 Aug 15;208(1):171–178. doi: 10.1111/j.1432-1033.1992.tb17171.x. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Bode W., Mayr I., Baumann U., Huber R., Stone S. R., Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 1989 Nov;8(11):3467–3475. doi: 10.1002/j.1460-2075.1989.tb08511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bode W., Turk D., Karshikov A. The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Sci. 1992 Apr;1(4):426–471. doi: 10.1002/pro.5560010402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Branson H. E., Katz J., Marble R., Griffin J. H. Inherited protein C deficiency and coumarin-responsive chronic relapsing purpura fulminans in a newborn infant. Lancet. 1983 Nov 19;2(8360):1165–1168. doi: 10.1016/s0140-6736(83)91216-3. [DOI] [PubMed] [Google Scholar]
  7. Brown J. R., Hartley B. S. Location of disulphide bridges by diagonal paper electrophoresis. The disulphide bridges of bovine chymotrypsinogen A. Biochem J. 1966 Oct;101(1):214–228. doi: 10.1042/bj1010214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collawn J. F., Stangel M., Kuhn L. A., Esekogwu V., Jing S. Q., Trowbridge I. S., Tainer J. A. Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell. 1990 Nov 30;63(5):1061–1072. doi: 10.1016/0092-8674(90)90509-d. [DOI] [PubMed] [Google Scholar]
  9. Degen S. J., MacGillivray R. T., Davie E. W. Characterization of the complementary deoxyribonucleic acid and gene coding for human prothrombin. Biochemistry. 1983 Apr 26;22(9):2087–2097. doi: 10.1021/bi00278a008. [DOI] [PubMed] [Google Scholar]
  10. Dreyfus M., Magny J. F., Bridey F., Schwarz H. P., Planché C., Dehan M., Tchernia G. Treatment of homozygous protein C deficiency and neonatal purpura fulminans with a purified protein C concentrate. N Engl J Med. 1991 Nov 28;325(22):1565–1568. doi: 10.1056/NEJM199111283252207. [DOI] [PubMed] [Google Scholar]
  11. Esmon C. T. The regulation of natural anticoagulant pathways. Science. 1987 Mar 13;235(4794):1348–1352. doi: 10.1126/science.3029867. [DOI] [PubMed] [Google Scholar]
  12. Esmon C. T. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem. 1989 Mar 25;264(9):4743–4746. [PubMed] [Google Scholar]
  13. Esmon N. L., DeBault L. E., Esmon C. T. Proteolytic formation and properties of gamma-carboxyglutamic acid-domainless protein C. J Biol Chem. 1983 May 10;258(9):5548–5553. [PubMed] [Google Scholar]
  14. Foster D. C., Yoshitake S., Davie E. W. The nucleotide sequence of the gene for human protein C. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4673–4677. doi: 10.1073/pnas.82.14.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Freer S. T., Kraut J., Robertus J. D., Wright H. T., Xuong N. H. Chymotrypsinogen: 2.5-angstrom crystal structure, comparison with alpha-chymotrypsin, and implications for zymogen activation. Biochemistry. 1970 Apr 28;9(9):1997–2009. doi: 10.1021/bi00811a022. [DOI] [PubMed] [Google Scholar]
  16. Fulcher C. A., Gardiner J. E., Griffin J. H., Zimmerman T. S. Proteolytic inactivation of human factor VIII procoagulant protein by activated human protein C and its analogy with factor V. Blood. 1984 Feb;63(2):486–489. [PubMed] [Google Scholar]
  17. Graf L., Craik C. S., Patthy A., Roczniak S., Fletterick R. J., Rutter W. J. Selective alteration of substrate specificity by replacement of aspartic acid-189 with lysine in the binding pocket of trypsin. Biochemistry. 1987 May 5;26(9):2616–2623. doi: 10.1021/bi00383a031. [DOI] [PubMed] [Google Scholar]
  18. Griffin J. H., Evatt B., Zimmerman T. S., Kleiss A. J., Wideman C. Deficiency of protein C in congenital thrombotic disease. J Clin Invest. 1981 Nov;68(5):1370–1373. doi: 10.1172/JCI110385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hackeng T. M., Hessing M., van 't Veer C., Meijer-Huizinga F., Meijers J. C., de Groot P. G., van Mourik J. A., Bouma B. N. Protein S binding to human endothelial cells is required for expression of cofactor activity for activated protein C. J Biol Chem. 1993 Feb 25;268(6):3993–4000. [PubMed] [Google Scholar]
  20. Harris K. W., Esmon C. T. Protein S is required for bovine platelets to support activated protein C binding and activity. J Biol Chem. 1985 Feb 25;260(4):2007–2010. [PubMed] [Google Scholar]
  21. Hecht H. J., Szardenings M., Collins J., Schomburg D. Three-dimensional structure of the complexes between bovine chymotrypsinogen A and two recombinant variants of human pancreatic secretory trypsin inhibitor (Kazal-type). J Mol Biol. 1991 Aug 5;220(3):711–722. doi: 10.1016/0022-2836(91)90112-j. [DOI] [PubMed] [Google Scholar]
  22. Hedstrom L., Szilagyi L., Rutter W. J. Converting trypsin to chymotrypsin: the role of surface loops. Science. 1992 Mar 6;255(5049):1249–1253. doi: 10.1126/science.1546324. [DOI] [PubMed] [Google Scholar]
  23. Heeb M. J., España F., Griffin J. H. Inhibition and complexation of activated protein C by two major inhibitors in plasma. Blood. 1989 Feb;73(2):446–454. [PubMed] [Google Scholar]
  24. Heeb M. J., Schwarz H. P., White T., Lämmle B., Berrettini M., Griffin J. H. Immunoblotting studies of the molecular forms of protein C in plasma. Thromb Res. 1988 Oct 1;52(1):33–43. doi: 10.1016/0049-3848(88)90038-2. [DOI] [PubMed] [Google Scholar]
  25. Hyde C. C., Miles E. W. The tryptophan synthase multienzyme complex: exploring structure-function relationships with X-ray crystallography and mutagenesis. Biotechnology (N Y) 1990 Jan;8(1):27–32. doi: 10.1038/nbt0190-27. [DOI] [PubMed] [Google Scholar]
  26. Jenny R. J., Pittman D. D., Toole J. J., Kriz R. W., Aldape R. A., Hewick R. M., Kaufman R. J., Mann K. G. Complete cDNA and derived amino acid sequence of human factor V. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4846–4850. doi: 10.1073/pnas.84.14.4846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Johnson A. E., Esmon N. L., Laue T. M., Esmon C. T. Structural changes required for activation of protein C are induced by Ca2+ binding to a high affinity site that does not contain gamma-carboxyglutamic acid. J Biol Chem. 1983 May 10;258(9):5554–5560. [PubMed] [Google Scholar]
  28. Kuhn L. A., Griffin J. H., Fisher C. L., Greengard J. S., Bouma B. N., España F., Tainer J. A. Elucidating the structural chemistry of glycosaminoglycan recognition by protein C inhibitor. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8506–8510. doi: 10.1073/pnas.87.21.8506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Madison E. L., Kobe A., Gething M. J., Sambrook J. F., Goldsmith E. J. Converting tissue plasminogen activator to a zymogen: a regulatory triad of Asp-His-Ser. Science. 1993 Oct 15;262(5132):419–421. doi: 10.1126/science.8211162. [DOI] [PubMed] [Google Scholar]
  30. McClure D. B., Walls J. D., Grinnell B. W. Post-translational processing events in the secretion pathway of human protein C, a complex vitamin K-dependent antithrombotic factor. J Biol Chem. 1992 Sep 25;267(27):19710–19717. [PubMed] [Google Scholar]
  31. Mesters R. M., Heeb M. J., Griffin J. H. A novel exosite in the light chain of human activated protein C essential for interaction with blood coagulation factor Va. Biochemistry. 1993 Nov 30;32(47):12656–12663. doi: 10.1021/bi00210a014. [DOI] [PubMed] [Google Scholar]
  32. Mesters R. M., Heeb M. J., Griffin J. H. Interactions and inhibition of blood coagulation factor Va involving residues 311-325 of activated protein C. Protein Sci. 1993 Sep;2(9):1482–1489. doi: 10.1002/pro.5560020912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mesters R. M., Houghten R. A., Griffin J. H. Identification of a sequence of human activated protein C (residues 390-404) essential for its anticoagulant activity. J Biol Chem. 1991 Dec 25;266(36):24514–24519. [PubMed] [Google Scholar]
  34. Mikes O., Holeysovský V., Tomásek V., Sorm F. Covalent structure of bovine trypsinogen. The position of the remaining amides. Biochem Biophys Res Commun. 1966 Aug 12;24(3):346–352. doi: 10.1016/0006-291x(66)90162-8. [DOI] [PubMed] [Google Scholar]
  35. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  36. Reitsma P. H., Poort S. R., Bernardi F., Gandrille S., Long G. L., Sala N., Cooper D. N. Protein C deficiency: a database of mutations. For the Protein C & S Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 1993 Jan 11;69(1):77–84. [PubMed] [Google Scholar]
  37. Rezaie A. R., Esmon N. L., Esmon C. T. The high affinity calcium-binding site involved in protein C activation is outside the first epidermal growth factor homology domain. J Biol Chem. 1992 Jun 15;267(17):11701–11704. [PubMed] [Google Scholar]
  38. Stearns D. J., Kurosawa S., Sims P. J., Esmon N. L., Esmon C. T. The interaction of a Ca2+-dependent monoclonal antibody with the protein C activation peptide region. Evidence for obligatory Ca2+ binding to both antigen and antibody. J Biol Chem. 1988 Jan 15;263(2):826–832. [PubMed] [Google Scholar]
  39. Suzuki K., Nishioka J., Matsuda M., Murayama H., Hashimoto S. Protein S is essential for the activated protein C-catalyzed inactivation of platelet-associated factor Va. J Biochem. 1984 Aug;96(2):455–460. doi: 10.1093/oxfordjournals.jbchem.a134857. [DOI] [PubMed] [Google Scholar]
  40. Tsukada H., Blow D. M. Structure of alpha-chymotrypsin refined at 1.68 A resolution. J Mol Biol. 1985 Aug 20;184(4):703–711. doi: 10.1016/0022-2836(85)90314-6. [DOI] [PubMed] [Google Scholar]
  41. Vehar G. A., Davie E. W. Preparation and properties of bovine factor VIII (antihemophilic factor). Biochemistry. 1980 Feb 5;19(3):401–410. doi: 10.1021/bi00544a001. [DOI] [PubMed] [Google Scholar]
  42. Walker F. J. Regulation of activated protein C by a new protein. A possible function for bovine protein S. J Biol Chem. 1980 Jun 25;255(12):5521–5524. [PubMed] [Google Scholar]
  43. Walker F. J. Regulation of activated protein C by protein S. The role of phospholipid in factor Va inactivation. J Biol Chem. 1981 Nov 10;256(21):11128–11131. [PubMed] [Google Scholar]
  44. Wang D., Bode W., Huber R. Bovine chymotrypsinogen A X-ray crystal structure analysis and refinement of a new crystal form at 1.8 A resolution. J Mol Biol. 1985 Oct 5;185(3):595–624. doi: 10.1016/0022-2836(85)90074-9. [DOI] [PubMed] [Google Scholar]
  45. Wildgoose P., Foster D., Schiødt J., Wiberg F. C., Birktoft J. J., Petersen L. C. Identification of a calcium binding site in the protease domain of human blood coagulation factor VII: evidence for its role in factor VII-tissue factor interaction. Biochemistry. 1993 Jan 12;32(1):114–119. doi: 10.1021/bi00052a016. [DOI] [PubMed] [Google Scholar]
  46. Wright H. T. Activation of chymotrypsinogen-A. An hypothesis based upon comparison of the crystal structures of chymotrypsinogen-A and alpha-chymotrypsin. J Mol Biol. 1973 Sep 5;79(1):13–23. doi: 10.1016/0022-2836(73)90266-0. [DOI] [PubMed] [Google Scholar]
  47. Yan S. C., Razzano P., Chao Y. B., Walls J. D., Berg D. T., McClure D. B., Grinnell B. W. Characterization and novel purification of recombinant human protein C from three mammalian cell lines. Biotechnology (N Y) 1990 Jul;8(7):655–661. doi: 10.1038/nbt0790-655. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES