Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Aug;7(8):1691–1699. doi: 10.1002/pro.5560070804

Binding of a substrate analog to a domain swapping protein: X-ray structure of the complex of bovine seminal ribonuclease with uridylyl(2',5')adenosine.

L Vitagliano 1, S Adinolfi 1, A Riccio 1, F Sica 1, A Zagari 1, L Mazzarella 1
PMCID: PMC2144088  PMID: 10082366

Abstract

Bovine seminal ribonuclease (BS-RNase) is a unique member of the pancreatic-like ribonuclease superfamily. The native enzyme is a mixture of two dimeric forms with distinct structural features. The most abundant form is characterized by the swapping of N-terminal fragments. In this paper, the crystal structure of the complex between the swapping dimer and uridylyl(2',5')adenosine is reported at 2.06 A resolution. The refined model has a crystallographic R-factor of 0.184 and good stereochemistry. The quality of the electron density maps enables the structure of both the inhibitor and active site residues to be unambiguously determined. The overall architecture of the active site is similar to that of RNase A. The dinucleotide adopts an extended conformation with the pyrimidine and purine base interacting with Thr45 and Asn71, respectively. Several residues (Gln11, His12, Lys41, His119, and Phe120) bind the oxygens of the phosphate group. The structural similarity of the active sites of BS-RNase and RNase A includes some specific water molecules believed to be relevant to catalytic activity. Upon binding of the dinucleotide, small but significant modifications of the tertiary and quaternary structure of the protein are observed. The ensuing correlation of these modifications with the catalytic activity of the enzyme is discussed.

Full Text

The Full Text of this article is available as a PDF (11.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altona C., Sundaralingam M. Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J Am Chem Soc. 1972 Nov 15;94(23):8205–8212. doi: 10.1021/ja00778a043. [DOI] [PubMed] [Google Scholar]
  2. Bennett M. J., Choe S., Eisenberg D. Domain swapping: entangling alliances between proteins. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3127–3131. doi: 10.1073/pnas.91.8.3127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett M. J., Schlunegger M. P., Eisenberg D. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 1995 Dec;4(12):2455–2468. doi: 10.1002/pro.5560041202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Capasso S., Giordano F., Mattia C. A., Mazzarella L., Zagari A. Refinement of the structure of bovine seminal ribonuclease. Biopolymers. 1983 Jan;22(1):327–332. doi: 10.1002/bip.360220142. [DOI] [PubMed] [Google Scholar]
  5. D'Alessio G., Di Donato A., Parente A., Piccoli R. Seminal RNase: a unique member of the ribonuclease superfamily. Trends Biochem Sci. 1991 Mar;16(3):104–106. doi: 10.1016/0968-0004(91)90042-t. [DOI] [PubMed] [Google Scholar]
  6. D'Alessio G., Malorni M. C., Parente A. Dissociation of bovine seminal ribonuclease into catalytically active monomers by selective reduction and alkylation of the intersubunit disulfide bridges. Biochemistry. 1975 Mar 25;14(6):1116–1122. doi: 10.1021/bi00677a004. [DOI] [PubMed] [Google Scholar]
  7. Di Donato A., Cafaro V., Romeo I., D'Alessio G. Hints on the evolutionary design of a dimeric RNase with special bioactions. Protein Sci. 1995 Aug;4(8):1470–1477. doi: 10.1002/pro.5560040804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fontecilla-Camps J. C., de Llorens R., le Du M. H., Cuchillo C. M. Crystal structure of ribonuclease A.d(ApTpApApG) complex. Direct evidence for extended substrate recognition. J Biol Chem. 1994 Aug 26;269(34):21526–21531. doi: 10.2210/pdb1rcn/pdb. [DOI] [PubMed] [Google Scholar]
  9. Hendrickson W. A. Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 1985;115:252–270. doi: 10.1016/0076-6879(85)15021-4. [DOI] [PubMed] [Google Scholar]
  10. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  11. Kishan R. V., Chandra N. R., Sudarsanakumar C., Suguna K., Vijayan M. Water-dependent domain motion and flexibility in ribonuclease A and the invariant features in its hydration shell. An X-ray study of two low-humidity crystal forms of the enzyme. Acta Crystallogr D Biol Crystallogr. 1995 Sep 1;51(Pt 5):703–710. doi: 10.1107/S0907444994014794. [DOI] [PubMed] [Google Scholar]
  12. Laccetti P., Spalletti-Cernia D., Portella G., De Corato P., D'Alessio G., Vecchio G. Seminal ribonuclease inhibits tumor growth and reduces the metastatic potential of Lewis lung carcinoma. Cancer Res. 1994 Aug 15;54(16):4253–4256. [PubMed] [Google Scholar]
  13. Listgarten J. N., Maes D., Wyns L., Aguilar C. F., Palmer R. A. Structure of the crystalline complex of deoxycytidylyl-3',5'-guanosine (3',5'-dCpdG) cocrystallized with ribonuclease at 1.9 A resolution. Acta Crystallogr D Biol Crystallogr. 1995 Sep 1;51(Pt 5):767–771. doi: 10.1107/S0907444995001570. [DOI] [PubMed] [Google Scholar]
  14. Mazzarella L., Capasso S., Demasi D., Di Lorenzo G., Mattia C. A., Zagari A. Bovine seminal ribonuclease: structure at 1.9 A resolution. Acta Crystallogr D Biol Crystallogr. 1993 Jul 1;49(Pt 4):389–402. doi: 10.1107/S0907444993003403. [DOI] [PubMed] [Google Scholar]
  15. Mazzarella L., Vitagliano L., Zagari A. Swapping structural determinants of ribonucleases: an energetic analysis of the hinge peptide 16-22. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3799–3803. doi: 10.1073/pnas.92.9.3799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
  17. Moodie S. L., Thornton J. M. A study into the effects of protein binding on nucleotide conformation. Nucleic Acids Res. 1993 Mar 25;21(6):1369–1380. doi: 10.1093/nar/21.6.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pavlovsky A. G., Borisova S. N., Borisov V. V., Antonov I. V., Karpeisky M. Y. The structure of the complex of ribonuclease S with fluoride analogue of UpA at 2.5 A resolution. FEBS Lett. 1978 Aug 15;92(2):258–262. doi: 10.1016/0014-5793(78)80766-2. [DOI] [PubMed] [Google Scholar]
  19. Piccoli R., Tamburrini M., Piccialli G., Di Donato A., Parente A., D'Alessio G. The dual-mode quaternary structure of seminal RNase. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1870–1874. doi: 10.1073/pnas.89.5.1870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Toiron C., González C., Bruix M., Rico M. Three-dimensional structure of the complexes of ribonuclease A with 2',5'-CpA and 3',5'-d(CpA) in aqueous solution, as obtained by NMR and restrained molecular dynamics. Protein Sci. 1996 Aug;5(8):1633–1647. doi: 10.1002/pro.5560050817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vescia S., Tramontano D., Augusti-Tocco G., D'Alessio G. In vitro studies on selective inhibition of tumor cell growth by seminal ribonuclease. Cancer Res. 1980 Oct;40(10):3740–3744. [PubMed] [Google Scholar]
  22. Wlodawer A., Miller M., Sjölin L. Active site of RNase: neutron diffraction study of a complex with uridine vanadate, a transition-state analog. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3628–3631. doi: 10.1073/pnas.80.12.3628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wodak S. Y. The structure of cytidilyl(2',5')adenosine when bound to pancreatic ribonuclease S. J Mol Biol. 1977 Nov;116(4):855–875. doi: 10.1016/0022-2836(77)90275-3. [DOI] [PubMed] [Google Scholar]
  24. Zegers I., Maes D., Dao-Thi M. H., Poortmans F., Palmer R., Wyns L. The structures of RNase A complexed with 3'-CMP and d(CpA): active site conformation and conserved water molecules. Protein Sci. 1994 Dec;3(12):2322–2339. doi: 10.1002/pro.5560031217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. delCardayré S. B., Raines R. T. A residue to residue hydrogen bond mediates the nucleotide specificity of ribonuclease A. J Mol Biol. 1995 Sep 22;252(3):328–336. doi: 10.1006/jmbi.1995.0500. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES