Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Nov;9(11):2192–2199. doi: 10.1110/ps.9.11.2192

Homology modeling and molecular dynamics simulations of lymphotactin.

Buyong 1, J Xiong 1, J Lubkowski 1, R Nussinov 1
PMCID: PMC2144500  PMID: 11152129

Abstract

We have modeled the structure of human lymphotactin (hLpnt), by homology modeling and molecular dynamics simulations. This chemokine is unique in having a single disulfide bond and a long C-terminal tail. Because other structural classes of chemokines have two pairs of Cys residues, compared to one in Lpnt, and because it has been shown that both disulfide bonds are required for stability and function, the question arises how the Lpnt maintains its structural integrity. The initial structure of hLpnt was constructed by homology modeling. The first 63 residues in the monomer of hLpnt were modeled using the structure of the human CC chemokine, RANTES, whose sequence appeared most similar. The structure of the long C-terminal tail, missing in RANTES, was taken from the human muscle fatty-acid binding protein. In a Protein Data Bank search, this protein was found to contain a sequence that was most homologous to the long tail. Consequently, the modeled hLpnt C-terminal tail consisted of both alpha-helical and beta-motifs. The complete model of the hLpnt monomer consisted of two alpha-helices located above the five-stranded beta-sheet. Molecular dynamics simulations of the solvated initial model have indicated that the stability of the predicted fold is related to the geometry of Pro78. The five-stranded beta-sheet appeared to be preserved only when Pro78 was modeled in the cis conformation. Simulations were also performed both for the C-terminal truncated forms of the hLpnt that contained one or two (CC chemokine-like) disulfide bonds, and for the chicken Lpnt (cLpnt). Our MD simulations indicated that the turn region (T30-G34) in hLpnt is important for the interactions with the receptor, and that the long C-terminal region stabilizes both the turn (T30-G34) and the five-stranded beta-sheet. The major conclusion from our theoretical studies is that the lack of one disulfide bond and the extension of the C-terminus in hLptn are mutually complementary. It is very likely that removal of two Cys residues sufficiently destabilizes the structure of a chemokine molecule, particularly the core beta-sheet, to abolish its biological function. However, this situation is rectified by the long C-terminal segment. The role of this long region is most likely to stabilize the first beta-turn region and alpha-helix H1, explaining how this chemokine can function with a single disulfide bond.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin E. T., Weber I. T., St Charles R., Xuan J. C., Appella E., Yamada M., Matsushima K., Edwards B. F., Clore G. M., Gronenborn A. M. Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):502–506. doi: 10.1073/pnas.88.2.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clark-Lewis I., Dewald B., Loetscher M., Moser B., Baggiolini M. Structural requirements for interleukin-8 function identified by design of analogs and CXC chemokine hybrids. J Biol Chem. 1994 Jun 10;269(23):16075–16081. [PubMed] [Google Scholar]
  3. Clark-Lewis I., Kim K. S., Rajarathnam K., Gong J. H., Dewald B., Moser B., Baggiolini M., Sykes B. D. Structure-activity relationships of chemokines. J Leukoc Biol. 1995 May;57(5):703–711. doi: 10.1002/jlb.57.5.703. [DOI] [PubMed] [Google Scholar]
  4. Clark-Lewis I., Schumacher C., Baggiolini M., Moser B. Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J Biol Chem. 1991 Dec 5;266(34):23128–23134. [PubMed] [Google Scholar]
  5. Clore G. M., Appella E., Yamada M., Matsushima K., Gronenborn A. M. Three-dimensional structure of interleukin 8 in solution. Biochemistry. 1990 Feb 20;29(7):1689–1696. doi: 10.1021/bi00459a004. [DOI] [PubMed] [Google Scholar]
  6. Crump M. P., Rajarathnam K., Kim K. S., Clark-Lewis I., Sykes B. D. Solution structure of eotaxin, a chemokine that selectively recruits eosinophils in allergic inflammation. J Biol Chem. 1998 Aug 28;273(35):22471–22479. doi: 10.1074/jbc.273.35.22471. [DOI] [PubMed] [Google Scholar]
  7. Dealwis C., Fernandez E. J., Thompson D. A., Simon R. J., Siani M. A., Lolis E. Crystal structure of chemically synthesized [N33A] stromal cell-derived factor 1alpha, a potent ligand for the HIV-1 "fusin" coreceptor. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6941–6946. doi: 10.1073/pnas.95.12.6941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eigenbrot C., Lowman H. B., Chee L., Artis D. R. Structural change and receptor binding in a chemokine mutant with a rearranged disulfide: X-ray structure of E38C/C50AIL-8 at 2 A resolution. Proteins. 1997 Apr;27(4):556–566. [PubMed] [Google Scholar]
  9. Handel T. M., Domaille P. J. Heteronuclear (1H, 13C, 15N) NMR assignments and solution structure of the monocyte chemoattractant protein-1 (MCP-1) dimer. Biochemistry. 1996 May 28;35(21):6569–6584. doi: 10.1021/bi9602270. [DOI] [PubMed] [Google Scholar]
  10. Hedrick J. A., Zlotnik A. Lymphotactin: a new class of chemokine. Methods Enzymol. 1997;287:206–215. doi: 10.1016/s0076-6879(97)87016-4. [DOI] [PubMed] [Google Scholar]
  11. Holmes W. E., Lee J., Kuang W. J., Rice G. C., Wood W. I. Structure and functional expression of a human interleukin-8 receptor. Science. 1991 Sep 13;253(5025):1278–1280. doi: 10.1126/science.1840701. [DOI] [PubMed] [Google Scholar]
  12. Hromas R., Kim C. H., Klemsz M., Krathwohl M., Fife K., Cooper S., Schnizlein-Bick C., Broxmeyer H. E. Isolation and characterization of Exodus-2, a novel C-C chemokine with a unique 37-amino acid carboxyl-terminal extension. J Immunol. 1997 Sep 15;159(6):2554–2558. [PubMed] [Google Scholar]
  13. Hébert C. A., Vitangcol R. V., Baker J. B. Scanning mutagenesis of interleukin-8 identifies a cluster of residues required for receptor binding. J Biol Chem. 1991 Oct 5;266(28):18989–18994. [PubMed] [Google Scholar]
  14. Kim K. S., Rajarathnam K., Clark-Lewis I., Sykes B. D. Structural characterization of a monomeric chemokine: monocyte chemoattractant protein-3. FEBS Lett. 1996 Oct 21;395(2-3):277–282. doi: 10.1016/0014-5793(96)01024-1. [DOI] [PubMed] [Google Scholar]
  15. Lodi P. J., Garrett D. S., Kuszewski J., Tsang M. L., Weatherbee J. A., Leonard W. J., Gronenborn A. M., Clore G. M. High-resolution solution structure of the beta chemokine hMIP-1 beta by multidimensional NMR. Science. 1994 Mar 25;263(5154):1762–1767. doi: 10.1126/science.8134838. [DOI] [PubMed] [Google Scholar]
  16. Lowman H. B., Fairbrother W. J., Slagle P. H., Kabakoff R., Liu J., Shire S., Hébert C. A. Monomeric variants of IL-8: effects of side chain substitutions and solution conditions upon dimer formation. Protein Sci. 1997 Mar;6(3):598–608. doi: 10.1002/pro.5560060309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lowman H. B., Slagle P. H., DeForge L. E., Wirth C. M., Gillece-Castro B. L., Bourell J. H., Fairbrother W. J. Exchanging interleukin-8 and melanoma growth-stimulating activity receptor binding specificities. J Biol Chem. 1996 Jun 14;271(24):14344–14352. doi: 10.1074/jbc.271.24.14344. [DOI] [PubMed] [Google Scholar]
  18. Lubkowski J., Bujacz G., Boqué L., Domaille P. J., Handel T. M., Wlodawer A. The structure of MCP-1 in two crystal forms provides a rare example of variable quaternary interactions. Nat Struct Biol. 1997 Jan;4(1):64–69. doi: 10.1038/nsb0197-64. [DOI] [PubMed] [Google Scholar]
  19. Ma B., Nussinov R. Molecular dynamics simulations of a beta-hairpin fragment of protein G: balance between side-chain and backbone forces. J Mol Biol. 2000 Mar 3;296(4):1091–1104. doi: 10.1006/jmbi.2000.3518. [DOI] [PubMed] [Google Scholar]
  20. Malkowski M. G., Wu J. Y., Lazar J. B., Johnson P. H., Edwards B. F. The crystal structure of recombinant human neutrophil-activating peptide-2 (M6L) at 1.9-A resolution. J Biol Chem. 1995 Mar 31;270(13):7077–7087. doi: 10.1074/jbc.270.13.7077. [DOI] [PubMed] [Google Scholar]
  21. Mayo K. H., Chen M. J. Human platelet factor 4 monomer-dimer-tetramer equilibria investigated by 1H NMR spectroscopy. Biochemistry. 1989 Nov 28;28(24):9469–9478. doi: 10.1021/bi00450a034. [DOI] [PubMed] [Google Scholar]
  22. Meunier S., Bernassau J. M., Guillemot J. C., Ferrara P., Darbon H. Determination of the three-dimensional structure of CC chemokine monocyte chemoattractant protein 3 by 1H two-dimensional NMR spectroscopy. Biochemistry. 1997 Apr 15;36(15):4412–4422. doi: 10.1021/bi9627929. [DOI] [PubMed] [Google Scholar]
  23. Minor D. L., Jr, Kim P. S. Measurement of the beta-sheet-forming propensities of amino acids. Nature. 1994 Feb 17;367(6464):660–663. doi: 10.1038/367660a0. [DOI] [PubMed] [Google Scholar]
  24. Mizoue L. S., Bazan J. F., Johnson E. C., Handel T. M. Solution structure and dynamics of the CX3C chemokine domain of fractalkine and its interaction with an N-terminal fragment of CX3CR1. Biochemistry. 1999 Feb 2;38(5):1402–1414. doi: 10.1021/bi9820614. [DOI] [PubMed] [Google Scholar]
  25. Murphy P. M., Tiffany H. L. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science. 1991 Sep 13;253(5025):1280–1283. doi: 10.1126/science.1891716. [DOI] [PubMed] [Google Scholar]
  26. Nagira M., Imai T., Hieshima K., Kusuda J., Ridanpä M., Takagi S., Nishimura M., Kakizaki M., Nomiyama H., Yoshie O. Molecular cloning of a novel human CC chemokine secondary lymphoid-tissue chemokine that is a potent chemoattractant for lymphocytes and mapped to chromosome 9p13. J Biol Chem. 1997 Aug 1;272(31):19518–19524. doi: 10.1074/jbc.272.31.19518. [DOI] [PubMed] [Google Scholar]
  27. Pakianathan D. R., Kuta E. G., Artis D. R., Skelton N. J., Hébert C. A. Distinct but overlapping epitopes for the interaction of a CC-chemokine with CCR1, CCR3 and CCR5. Biochemistry. 1997 Aug 12;36(32):9642–9648. doi: 10.1021/bi970593z. [DOI] [PubMed] [Google Scholar]
  28. Rajarathnam K., Kay C. M., Dewald B., Wolf M., Baggiolini M., Clark-Lewis I., Sykes B. D. Neutrophil-activating peptide-2 and melanoma growth-stimulatory activity are functional as monomers for neutrophil activation. J Biol Chem. 1997 Jan 17;272(3):1725–1729. doi: 10.1074/jbc.272.3.1725. [DOI] [PubMed] [Google Scholar]
  29. Rajarathnam K., Sykes B. D., Kay C. M., Dewald B., Geiser T., Baggiolini M., Clark-Lewis I. Neutrophil activation by monomeric interleukin-8. Science. 1994 Apr 1;264(5155):90–92. doi: 10.1126/science.8140420. [DOI] [PubMed] [Google Scholar]
  30. Rollins B. J. Chemokines. Blood. 1997 Aug 1;90(3):909–928. [PubMed] [Google Scholar]
  31. Rossi D., Sanchez-García J., McCormack W. T., Bazan J. F., Zlotnik A. Identification of a chicken "C" chemokine related to lymphotactin. J Leukoc Biol. 1999 Jan;65(1):87–93. doi: 10.1002/jlb.65.1.87. [DOI] [PubMed] [Google Scholar]
  32. Skelton N. J., Quan C., Reilly D., Lowman H. Structure of a CXC chemokine-receptor fragment in complex with interleukin-8. Structure. 1999 Feb 15;7(2):157–168. doi: 10.1016/S0969-2126(99)80022-7. [DOI] [PubMed] [Google Scholar]
  33. Sticht H., Escher S. E., Schweimer K., Forssmann W. G., Rösch P., Adermann K. Solution structure of the human CC chemokine 2: A monomeric representative of the CC chemokine subtype. Biochemistry. 1999 May 11;38(19):5995–6002. doi: 10.1021/bi990065i. [DOI] [PubMed] [Google Scholar]
  34. Street A. G., Mayo S. L. Intrinsic beta-sheet propensities result from van der Waals interactions between side chains and the local backbone. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9074–9076. doi: 10.1073/pnas.96.16.9074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wilken J., Hoover D., Thompson D. A., Barlow P. N., McSparron H., Picard L., Wlodawer A., Lubkowski J., Kent S. B. Total chemical synthesis and high-resolution crystal structure of the potent anti-HIV protein AOP-RANTES. Chem Biol. 1999 Jan;6(1):43–51. doi: 10.1016/S1074-5521(99)80019-2. [DOI] [PubMed] [Google Scholar]
  36. Williams G., Borkakoti N., Bottomley G. A., Cowan I., Fallowfield A. G., Jones P. S., Kirtland S. J., Price G. J., Price L. Mutagenesis studies of interleukin-8. Identification of a second epitope involved in receptor binding. J Biol Chem. 1996 Apr 19;271(16):9579–9586. doi: 10.1074/jbc.271.16.9579. [DOI] [PubMed] [Google Scholar]
  37. Wright P. E., Dyson H. J. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol. 1999 Oct 22;293(2):321–331. doi: 10.1006/jmbi.1999.3110. [DOI] [PubMed] [Google Scholar]
  38. Yoshida R., Nagira M., Kitaura M., Imagawa N., Imai T., Yoshie O. Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem. 1998 Mar 20;273(12):7118–7122. doi: 10.1074/jbc.273.12.7118. [DOI] [PubMed] [Google Scholar]
  39. Zhang X., Chen L., Bancroft D. P., Lai C. K., Maione T. E. Crystal structure of recombinant human platelet factor 4. Biochemistry. 1994 Jul 12;33(27):8361–8366. doi: 10.1021/bi00193a025. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES