Abstract
I. Architecture of GroEL and GroES and the reaction pathway A. Architecture of the chaperonins B. Reaction pathway of GroEL-GroES-mediated folding II. Polypeptide binding A. A parallel network of chaperones binding polypeptides in vivo B. Polypeptide binding in vitro 1. Role of hydrophobicity in recognition 2. Homologous proteins with differing recognition-differences in primary structure versus effects on folding pathway 3. Conformations recognized by GroEL a. Refolding studies b. Binding of metastable intermediates c. Conformations while stably bound at GroEL 4. Binding constants and rates of association 5. Conformational changes in the substrate protein associated with binding by GroEL a. Observations b. Kinetic versus thermodynamic action of GroEL in mediating unfolding c. Crossing the energy landscape in the presence of GroEL III. ATP binding and hydrolysis-driving the reaction cycle IV. GroEL-GroES-polypeptide ternary complexes-the folding-active cis complex A. Cis and trans ternary complexes B. Symmetric complexes C. The folding-active intermediate of a chaperonin reaction-cis ternary complex D. The role of the cis space in the folding reaction E. Folding governed by a "timer" mechanism F. Release of nonnative polypeptides during the GroEL-GroES reaction G. Release of both native and nonnative forms under physiologic conditions H. A role for ATP binding, as well as hydrolysis, in the folding cycle V. Concluding remarks.
Full Text
The Full Text of this article is available as a PDF (6.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
- Azem A., Diamant S., Kessel M., Weiss C., Goloubinoff P. The protein-folding activity of chaperonins correlates with the symmetric GroEL14(GroES7)2 heterooligomer. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12021–12025. doi: 10.1073/pnas.92.26.12021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Azem A., Kessel M., Goloubinoff P. Characterization of a functional GroEL14(GroES7)2 chaperonin hetero-oligomer. Science. 1994 Jul 29;265(5172):653–656. doi: 10.1126/science.7913553. [DOI] [PubMed] [Google Scholar]
- Beckmann R. P., Mizzen L. E., Welch W. J. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science. 1990 May 18;248(4957):850–854. doi: 10.1126/science.2188360. [DOI] [PubMed] [Google Scholar]
- Blond-Elguindi S., Cwirla S. E., Dower W. J., Lipshutz R. J., Sprang S. R., Sambrook J. F., Gething M. J. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell. 1993 Nov 19;75(4):717–728. doi: 10.1016/0092-8674(93)90492-9. [DOI] [PubMed] [Google Scholar]
- Bochkareva E. S., Girshovich A. S. A newly synthesized protein interacts with GroES on the surface of chaperonin GroEL. J Biol Chem. 1992 Dec 25;267(36):25672–25675. [PubMed] [Google Scholar]
- Bochkareva E. S., Lissin N. M., Flynn G. C., Rothman J. E., Girshovich A. S. Positive cooperativity in the functioning of molecular chaperone GroEL. J Biol Chem. 1992 Apr 5;267(10):6796–6800. [PubMed] [Google Scholar]
- Boisvert D. C., Wang J., Otwinowski Z., Horwich A. L., Sigler P. B. The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S. Nat Struct Biol. 1996 Feb;3(2):170–177. doi: 10.1038/nsb0296-170. [DOI] [PubMed] [Google Scholar]
- Braig K., Otwinowski Z., Hegde R., Boisvert D. C., Joachimiak A., Horwich A. L., Sigler P. B. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature. 1994 Oct 13;371(6498):578–586. doi: 10.1038/371578a0. [DOI] [PubMed] [Google Scholar]
- Braig K., Simon M., Furuya F., Hainfeld J. F., Horwich A. L. A polypeptide bound by the chaperonin groEL is localized within a central cavity. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3978–3982. doi: 10.1073/pnas.90.9.3978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunschier R., Danner M., Seckler R. Interactions of phage P22 tailspike protein with GroE molecular chaperones during refolding in vitro. J Biol Chem. 1993 Feb 5;268(4):2767–2772. [PubMed] [Google Scholar]
- Buchberger A., Schröder H., Hesterkamp T., Schönfeld H. J., Bukau B. Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding. J Mol Biol. 1996 Aug 23;261(3):328–333. doi: 10.1006/jmbi.1996.0465. [DOI] [PubMed] [Google Scholar]
- Bukau B., Walker G. C. Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J Bacteriol. 1989 May;171(5):2337–2346. doi: 10.1128/jb.171.5.2337-2346.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burston S. G., Ranson N. A., Clarke A. R. The origins and consequences of asymmetry in the chaperonin reaction cycle. J Mol Biol. 1995 May 26;249(1):138–152. doi: 10.1006/jmbi.1995.0285. [DOI] [PubMed] [Google Scholar]
- Chandrasekhar G. N., Tilly K., Woolford C., Hendrix R., Georgopoulos C. Purification and properties of the groES morphogenetic protein of Escherichia coli. J Biol Chem. 1986 Sep 15;261(26):12414–12419. [PubMed] [Google Scholar]
- Chen S., Roseman A. M., Hunter A. S., Wood S. P., Burston S. G., Ranson N. A., Clarke A. R., Saibil H. R. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature. 1994 Sep 15;371(6494):261–264. doi: 10.1038/371261a0. [DOI] [PubMed] [Google Scholar]
- Clark A. C., Hugo E., Frieden C. Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL. Biochemistry. 1996 May 7;35(18):5893–5901. doi: 10.1021/bi953051v. [DOI] [PubMed] [Google Scholar]
- Corrales F. J., Fersht A. R. The folding of GroEL-bound barnase as a model for chaperonin-mediated protein folding. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5326–5330. doi: 10.1073/pnas.92.12.5326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corrales F. J., Fersht A. R. Toward a mechanism for GroEL.GroES chaperone activity: an ATPase-gated and -pulsed folding and annealing cage. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4509–4512. doi: 10.1073/pnas.93.9.4509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diamant S., Azem A., Weiss C., Goloubinoff P. Increased efficiency of GroE-assisted protein folding by manganese ions. J Biol Chem. 1995 Nov 24;270(47):28387–28391. doi: 10.1074/jbc.270.47.28387. [DOI] [PubMed] [Google Scholar]
- Engel A., Hayer-Hartl M. K., Goldie K. N., Pfeifer G., Hegerl R., Müller S., da Silva A. C., Baumeister W., Hartl F. U. Functional significance of symmetrical versus asymmetrical GroEL-GroES chaperonin complexes. Science. 1995 Aug 11;269(5225):832–836. doi: 10.1126/science.7638600. [DOI] [PubMed] [Google Scholar]
- Flynn G. C., Chappell T. G., Rothman J. E. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science. 1989 Jul 28;245(4916):385–390. doi: 10.1126/science.2756425. [DOI] [PubMed] [Google Scholar]
- Galisteo M. L., Gordon C. L., King J. Stability of wild-type and temperature-sensitive protein subunits of the phage P22 capsid. J Biol Chem. 1995 Jul 14;270(28):16595–16601. doi: 10.1074/jbc.270.28.16595. [DOI] [PubMed] [Google Scholar]
- Gervasoni P., Staudenmann W., James P., Gehrig P., Plückthun A. beta-Lactamase binds to GroEL in a conformation highly protected against hydrogen/deuterium exchange. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12189–12194. doi: 10.1073/pnas.93.22.12189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon C. L., Sather S. K., Casjens S., King J. Selective in vivo rescue by GroEL/ES of thermolabile folding intermediates to phage P22 structural proteins. J Biol Chem. 1994 Nov 11;269(45):27941–27951. [PubMed] [Google Scholar]
- Gragerov A., Gottesman M. E. Different peptide binding specificities of hsp70 family members. J Mol Biol. 1994 Aug 12;241(2):133–135. doi: 10.1006/jmbi.1994.1482. [DOI] [PubMed] [Google Scholar]
- Gragerov A., Nudler E., Komissarova N., Gaitanaris G. A., Gottesman M. E., Nikiforov V. Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10341–10344. doi: 10.1073/pnas.89.21.10341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gragerov A., Zeng L., Zhao X., Burkholder W., Gottesman M. E. Specificity of DnaK-peptide binding. J Mol Biol. 1994 Jan 21;235(3):848–854. doi: 10.1006/jmbi.1994.1043. [DOI] [PubMed] [Google Scholar]
- Gray T. E., Fersht A. R. Cooperativity in ATP hydrolysis by GroEL is increased by GroES. FEBS Lett. 1991 Nov 4;292(1-2):254–258. doi: 10.1016/0014-5793(91)80878-7. [DOI] [PubMed] [Google Scholar]
- Gray T. E., Fersht A. R. Refolding of barnase in the presence of GroE. J Mol Biol. 1993 Aug 20;232(4):1197–1207. doi: 10.1006/jmbi.1993.1471. [DOI] [PubMed] [Google Scholar]
- Gulukota K., Wolynes P. G. Statistical mechanics of kinetic proofreading in protein folding in vivo. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9292–9296. doi: 10.1073/pnas.91.20.9292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayer-Hartl M. K., Ewbank J. J., Creighton T. E., Hartl F. U. Conformational specificity of the chaperonin GroEL for the compact folding intermediates of alpha-lactalbumin. EMBO J. 1994 Jul 1;13(13):3192–3202. doi: 10.1002/j.1460-2075.1994.tb06618.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayer-Hartl M. K., Martin J., Hartl F. U. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Science. 1995 Aug 11;269(5225):836–841. doi: 10.1126/science.7638601. [DOI] [PubMed] [Google Scholar]
- Hesterkamp T., Hauser S., Lütcke H., Bukau B. Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4437–4441. doi: 10.1073/pnas.93.9.4437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hlodan R., Tempst P., Hartl F. U. Binding of defined regions of a polypeptide to GroEL and its implications for chaperonin-mediated protein folding. Nat Struct Biol. 1995 Jul;2(7):587–595. doi: 10.1038/nsb0795-587. [DOI] [PubMed] [Google Scholar]
- Horwich A. L., Low K. B., Fenton W. A., Hirshfield I. N., Furtak K. Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell. 1993 Sep 10;74(5):909–917. doi: 10.1016/0092-8674(93)90470-b. [DOI] [PubMed] [Google Scholar]
- Höll-Neugebauer B., Rudolph R., Schmidt M., Buchner J. Reconstitution of a heat shock effect in vitro: influence of GroE on the thermal aggregation of alpha-glucosidase from yeast. Biochemistry. 1991 Dec 17;30(50):11609–11614. doi: 10.1021/bi00114a001. [DOI] [PubMed] [Google Scholar]
- Ishii N., Taguchi H., Sasabe H., Yoshida M. Folding intermediate binds to the bottom of bullet-shaped holo-chaperonin and is readily accessible to antibody. J Mol Biol. 1994 Feb 25;236(3):691–696. doi: 10.1006/jmbi.1994.1181. [DOI] [PubMed] [Google Scholar]
- Itzhaki L. S., Otzen D. E., Fersht A. R. Nature and consequences of GroEL-protein interactions. Biochemistry. 1995 Nov 7;34(44):14581–14587. doi: 10.1021/bi00044a037. [DOI] [PubMed] [Google Scholar]
- Jackson G. S., Staniforth R. A., Halsall D. J., Atkinson T., Holbrook J. J., Clarke A. R., Burston S. G. Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding. Biochemistry. 1993 Mar 16;32(10):2554–2563. doi: 10.1021/bi00061a013. [DOI] [PubMed] [Google Scholar]
- Kandror O., Busconi L., Sherman M., Goldberg A. L. Rapid degradation of an abnormal protein in Escherichia coli involves the chaperones GroEL and GroES. J Biol Chem. 1994 Sep 23;269(38):23575–23582. [PubMed] [Google Scholar]
- Katsumata K., Okazaki A., Kuwajima K. Effect of GroEL on the re-folding kinetics of alpha-lactalbumin. J Mol Biol. 1996 May 24;258(5):827–838. doi: 10.1006/jmbi.1996.0290. [DOI] [PubMed] [Google Scholar]
- Knarr G., Gething M. J., Modrow S., Buchner J. BiP binding sequences in antibodies. J Biol Chem. 1995 Nov 17;270(46):27589–27594. doi: 10.1074/jbc.270.46.27589. [DOI] [PubMed] [Google Scholar]
- Laminet A. A., Ziegelhoffer T., Georgopoulos C., Plückthun A. The Escherichia coli heat shock proteins GroEL and GroES modulate the folding of the beta-lactamase precursor. EMBO J. 1990 Jul;9(7):2315–2319. doi: 10.1002/j.1460-2075.1990.tb07403.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landry S. J., Gierasch L. M. The chaperonin GroEL binds a polypeptide in an alpha-helical conformation. Biochemistry. 1991 Jul 30;30(30):7359–7362. doi: 10.1021/bi00244a001. [DOI] [PubMed] [Google Scholar]
- Landry S. J., Jordan R., McMacken R., Gierasch L. M. Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature. 1992 Jan 30;355(6359):455–457. doi: 10.1038/355455a0. [DOI] [PubMed] [Google Scholar]
- Landry S. J., Zeilstra-Ryalls J., Fayet O., Georgopoulos C., Gierasch L. M. Characterization of a functionally important mobile domain of GroES. Nature. 1993 Jul 15;364(6434):255–258. doi: 10.1038/364255a0. [DOI] [PubMed] [Google Scholar]
- Langer T., Pfeifer G., Martin J., Baumeister W., Hartl F. U. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 1992 Dec;11(13):4757–4765. doi: 10.1002/j.1460-2075.1992.tb05581.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lilie H., Buchner J. Interaction of GroEL with a highly structured folding intermediate: iterative binding cycles do not involve unfolding. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8100–8104. doi: 10.1073/pnas.92.18.8100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin Z., Schwartz F. P., Eisenstein E. The hydrophobic nature of GroEL-substrate binding. J Biol Chem. 1995 Jan 20;270(3):1011–1014. doi: 10.1074/jbc.270.3.1011. [DOI] [PubMed] [Google Scholar]
- Llorca O., Carrascosa J. L., Valpuesta J. M. Biochemical characterization of symmetric GroEL-GroES complexes. Evidence for a role in protein folding. J Biol Chem. 1996 Jan 5;271(1):68–76. doi: 10.1074/jbc.271.1.68. [DOI] [PubMed] [Google Scholar]
- Mande S. C., Mehra V., Bloom B. R., Hol W. G. Structure of the heat shock protein chaperonin-10 of Mycobacterium leprae. Science. 1996 Jan 12;271(5246):203–207. doi: 10.1126/science.271.5246.203. [DOI] [PubMed] [Google Scholar]
- Martin J., Horwich A. L., Hartl F. U. Prevention of protein denaturation under heat stress by the chaperonin Hsp60. Science. 1992 Nov 6;258(5084):995–998. doi: 10.1126/science.1359644. [DOI] [PubMed] [Google Scholar]
- Martin J., Langer T., Boteva R., Schramel A., Horwich A. L., Hartl F. U. Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate. Nature. 1991 Jul 4;352(6330):36–42. doi: 10.1038/352036a0. [DOI] [PubMed] [Google Scholar]
- Mattingly J. R., Jr, Iriarte A., Martinez-Carrion M. Homologous proteins with different affinities for groEL. The refolding of the aspartate aminotransferase isozymes at varying temperatures. J Biol Chem. 1995 Jan 20;270(3):1138–1148. doi: 10.1074/jbc.270.3.1138. [DOI] [PubMed] [Google Scholar]
- Mayhew M., da Silva A. C., Martin J., Erdjument-Bromage H., Tempst P., Hartl F. U. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature. 1996 Feb 1;379(6564):420–426. doi: 10.1038/379420a0. [DOI] [PubMed] [Google Scholar]
- Mendoza J. A., Rogers E., Lorimer G. H., Horowitz P. M. Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. J Biol Chem. 1991 Jul 15;266(20):13044–13049. [PubMed] [Google Scholar]
- Murai N., Taguchi H., Yoshida M. Kinetic analysis of interactions between GroEL and reduced alpha-lactalbumin. Effect of GroES and nucleotides. J Biol Chem. 1995 Aug 25;270(34):19957–19963. doi: 10.1074/jbc.270.34.19957. [DOI] [PubMed] [Google Scholar]
- Nelson R. J., Ziegelhoffer T., Nicolet C., Werner-Washburne M., Craig E. A. The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell. 1992 Oct 2;71(1):97–105. doi: 10.1016/0092-8674(92)90269-i. [DOI] [PubMed] [Google Scholar]
- Okazaki A., Ikura T., Nikaido K., Kuwajima K. The chaperonin GroEL does not recognize apo-alpha-lactalbumin in the molten globule state. Nat Struct Biol. 1994 Jul;1(7):439–446. doi: 10.1038/nsb0794-439. [DOI] [PubMed] [Google Scholar]
- Paek K. H., Walker G. C. Escherichia coli dnaK null mutants are inviable at high temperature. J Bacteriol. 1987 Jan;169(1):283–290. doi: 10.1128/jb.169.1.283-290.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ranson N. A., Dunster N. J., Burston S. G., Clarke A. R. Chaperonins can catalyse the reversal of early aggregation steps when a protein misfolds. J Mol Biol. 1995 Jul 28;250(5):581–586. doi: 10.1006/jmbi.1995.0399. [DOI] [PubMed] [Google Scholar]
- Reid B. G., Flynn G. C. GroEL binds to and unfolds rhodanese posttranslationally. J Biol Chem. 1996 Mar 22;271(12):7212–7217. doi: 10.1074/jbc.271.12.7212. [DOI] [PubMed] [Google Scholar]
- Richarme G., Kohiyama M. Amino acid specificity of the Escherichia coli chaperone GroEL (heat shock protein 60). J Biol Chem. 1994 Mar 11;269(10):7095–7098. [PubMed] [Google Scholar]
- Robinson C. V., Gross M., Eyles S. J., Ewbank J. J., Mayhew M., Hartl F. U., Dobson C. M., Radford S. E. Conformation of GroEL-bound alpha-lactalbumin probed by mass spectrometry. Nature. 1994 Dec 15;372(6507):646–651. doi: 10.1038/372646a0. [DOI] [PubMed] [Google Scholar]
- Roseman A. M., Chen S., White H., Braig K., Saibil H. R. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell. 1996 Oct 18;87(2):241–251. doi: 10.1016/s0092-8674(00)81342-2. [DOI] [PubMed] [Google Scholar]
- Roy H., Kupferschmid M., Bell J. A. Theory of chaperonin action: inertial model for enhancement of prokaryotic Rubisco assembly. Protein Sci. 1992 Jul;1(7):925–934. doi: 10.1002/pro.5560010711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt M., Buchner J. Interaction of GroE with an all-beta-protein. J Biol Chem. 1992 Aug 25;267(24):16829–16833. [PubMed] [Google Scholar]
- Schmidt M., Rutkat K., Rachel R., Pfeifer G., Jaenicke R., Viitanen P., Lorimer G., Buchner J. Symmetric complexes of GroE chaperonins as part of the functional cycle. Science. 1994 Jul 29;265(5172):656–659. doi: 10.1126/science.7913554. [DOI] [PubMed] [Google Scholar]
- Schröder H., Langer T., Hartl F. U., Bukau B. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 1993 Nov;12(11):4137–4144. doi: 10.1002/j.1460-2075.1993.tb06097.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith K. E., Fisher M. T. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding. J Biol Chem. 1995 Sep 15;270(37):21517–21523. doi: 10.1074/jbc.270.37.21517. [DOI] [PubMed] [Google Scholar]
- Sparrer H., Lilie H., Buchner J. Dynamics of the GroEL-protein complex: effects of nucleotides and folding mutants. J Mol Biol. 1996 Apr 26;258(1):74–87. doi: 10.1006/jmbi.1996.0235. [DOI] [PubMed] [Google Scholar]
- Thiyagarajan P., Henderson S. J., Joachimiak A. Solution structures of GroEL and its complex with rhodanese from small-angle neutron scattering. Structure. 1996 Jan 15;4(1):79–88. doi: 10.1016/s0969-2126(96)00011-1. [DOI] [PubMed] [Google Scholar]
- Tian G., Vainberg I. E., Tap W. D., Lewis S. A., Cowan N. J. Specificity in chaperonin-mediated protein folding. Nature. 1995 May 18;375(6528):250–253. doi: 10.1038/375250a0. [DOI] [PubMed] [Google Scholar]
- Todd M. J., Lorimer G. H., Thirumalai D. Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4030–4035. doi: 10.1073/pnas.93.9.4030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Todd M. J., Viitanen P. V., Lorimer G. H. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science. 1994 Jul 29;265(5172):659–666. doi: 10.1126/science.7913555. [DOI] [PubMed] [Google Scholar]
- Valent Q. A., Kendall D. A., High S., Kusters R., Oudega B., Luirink J. Early events in preprotein recognition in E. coli: interaction of SRP and trigger factor with nascent polypeptides. EMBO J. 1995 Nov 15;14(22):5494–5505. doi: 10.1002/j.1460-2075.1995.tb00236.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Dyk T. K., Gatenby A. A., LaRossa R. A. Demonstration by genetic suppression of interaction of GroE products with many proteins. Nature. 1989 Nov 23;342(6248):451–453. doi: 10.1038/342451a0. [DOI] [PubMed] [Google Scholar]
- Viitanen P. V., Donaldson G. K., Lorimer G. H., Lubben T. H., Gatenby A. A. Complex interactions between the chaperonin 60 molecular chaperone and dihydrofolate reductase. Biochemistry. 1991 Oct 8;30(40):9716–9723. doi: 10.1021/bi00104a021. [DOI] [PubMed] [Google Scholar]
- Viitanen P. V., Gatenby A. A., Lorimer G. H. Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins. Protein Sci. 1992 Mar;1(3):363–369. doi: 10.1002/pro.5560010308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter S., Lorimer G. H., Schmid F. X. A thermodynamic coupling mechanism for GroEL-mediated unfolding. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9425–9430. doi: 10.1073/pnas.93.18.9425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weissman J. S., Kashi Y., Fenton W. A., Horwich A. L. GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell. 1994 Aug 26;78(4):693–702. doi: 10.1016/0092-8674(94)90533-9. [DOI] [PubMed] [Google Scholar]
- Weissman J. S., Rye H. S., Fenton W. A., Beechem J. M., Horwich A. L. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell. 1996 Feb 9;84(3):481–490. doi: 10.1016/s0092-8674(00)81293-3. [DOI] [PubMed] [Google Scholar]
- Yee D. P., Chan H. S., Havel T. F., Dill K. A. Does compactness induce secondary structure in proteins? A study of poly-alanine chains computed by distance geometry. J Mol Biol. 1994 Aug 26;241(4):557–573. doi: 10.1006/jmbi.1994.1531. [DOI] [PubMed] [Google Scholar]
- Yifrach O., Horovitz A. Allosteric control by ATP of non-folded protein binding to GroEL. J Mol Biol. 1996 Jan 26;255(3):356–361. doi: 10.1006/jmbi.1996.0028. [DOI] [PubMed] [Google Scholar]
- Yifrach O., Horovitz A. Two lines of allosteric communication in the oligomeric chaperonin GroEL are revealed by the single mutation Arg196-->Ala. J Mol Biol. 1994 Oct 28;243(3):397–401. doi: 10.1006/jmbi.1994.1667. [DOI] [PubMed] [Google Scholar]
- Zahn R., Lindner P., Axmann S. E., Plückthun A. Effect of single point mutations in citrate synthase on binding to GroEL. FEBS Lett. 1996 Feb 12;380(1-2):152–156. doi: 10.1016/0014-5793(96)00013-0. [DOI] [PubMed] [Google Scholar]
- Zahn R., Perrett S., Stenberg G., Fersht A. R. Catalysis of amide proton exchange by the molecular chaperones GroEL and SecB. Science. 1996 Feb 2;271(5249):642–645. doi: 10.1126/science.271.5249.642. [DOI] [PubMed] [Google Scholar]
- Zahn R., Plückthun A. GroE prevents the accumulation of early folding intermediates of pre-beta-lactamase without changing the folding pathway. Biochemistry. 1992 Mar 31;31(12):3249–3255. doi: 10.1021/bi00127a029. [DOI] [PubMed] [Google Scholar]
- Zahn R., Plückthun A. Thermodynamic partitioning model for hydrophobic binding of polypeptides by GroEL. II. GroEL recognizes thermally unfolded mature beta-lactamase. J Mol Biol. 1994 Sep 16;242(2):165–174. doi: 10.1006/jmbi.1994.1567. [DOI] [PubMed] [Google Scholar]
- Zahn R., Spitzfaden C., Ottiger M., Wüthrich K., Plückthun A. Destabilization of the complete protein secondary structure on binding to the chaperone GroEL. Nature. 1994 Mar 17;368(6468):261–265. doi: 10.1038/368261a0. [DOI] [PubMed] [Google Scholar]
- de Crouy-Chanel A., el Yaagoubi A., Kohiyama M., Richarme G. Reversal by GroES of the GroEL preference from hydrophobic amino acids toward hydrophilic amino acids. J Biol Chem. 1995 May 5;270(18):10571–10575. doi: 10.1074/jbc.270.18.10571. [DOI] [PubMed] [Google Scholar]