Skip to main content
The British Journal of Cancer. Supplement logoLink to The British Journal of Cancer. Supplement
. 1987 Jun;8:87–95.

Role of superoxide dismutase in modification of radiation injury.

A Petkau 1
PMCID: PMC2149491  PMID: 3307878

Abstract

The effects of superoxide dismutase on radiobiological end-points are discussed in terms of the time scale of primary radiation chemical reactions and later cellular and physiological processes. The effectiveness of SOD on responsive subpopulations of bone marrow progenitor cells is shown to be temperature- and dose-dependent. Under certain conditions, the protective actions of superoxide dismutase and catalase complement each other in a sequential fashion. Finally, cellular levels of endogenous superoxide dismutase in atomic radiation workers are compared with those in a control population.

Full text

PDF
92

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong D. A., Buchanan J. D. Reactions of O-.2, H2O2 and other oxidants with sulfhydryl enzymes. Photochem Photobiol. 1978 Oct-Nov;28(4-5):743–755. doi: 10.1111/j.1751-1097.1978.tb07011.x. [DOI] [PubMed] [Google Scholar]
  2. Bartosz G., Fried R., Grzelińska E., Leyko W. Effect of hyperoxide radicals on bovine-erythrocyte membrane. Eur J Biochem. 1977 Feb 15;73(1):261–264. doi: 10.1111/j.1432-1033.1977.tb11315.x. [DOI] [PubMed] [Google Scholar]
  3. Biliński T., Krawiec Z., Liczmański A., Litwińska J. Is hydroxyl radical generated by the Fenton reaction in vivo? Biochem Biophys Res Commun. 1985 Jul 31;130(2):533–539. doi: 10.1016/0006-291x(85)90449-8. [DOI] [PubMed] [Google Scholar]
  4. Chelack W. S., Petkau A. Identifying superoxide-sensitive progenitor cells in mouse bone marrow. Int J Radiat Biol Relat Stud Phys Chem Med. 1983 Nov;44(5):523–529. doi: 10.1080/09553008314551531. [DOI] [PubMed] [Google Scholar]
  5. Clark R. A. Chemotactic factors trigger their own oxidative inactivation by human neutrophils. J Immunol. 1982 Dec;129(6):2725–2728. [PubMed] [Google Scholar]
  6. Dillard C. J., Dumelin E. E., Tappel A. L. Effect of dietary vitamin E on expiration of pentane and ethane by the rat. Lipids. 1977 Jan;12(1):109–114. doi: 10.1007/BF02532981. [DOI] [PubMed] [Google Scholar]
  7. Dumelin E. E., Dillard C. J., Tappel A. L. Effect of vitamin E and ozone on pentane and ethane expired by rats. Arch Environ Health. 1978 May-Jun;33(3):129–135. doi: 10.1080/00039896.1978.10667322. [DOI] [PubMed] [Google Scholar]
  8. Dumelin E. E., Tappel A. L. Hydrocarbon gases produced during in vitro peroxidation of polyunsaturated fatty acids and decomposition of preformed hydroperoxides. Lipids. 1977 Nov;12(11):894–900. doi: 10.1007/BF02533308. [DOI] [PubMed] [Google Scholar]
  9. Edsmyr F., Huber W., Menander K. B. Orgotein efficacy in ameliorating side effects due to radiation therapy. I. Double-blind, placebo-controlled trial in patients with bladder tumors. Curr Ther Res Clin Exp. 1976 Feb;19(2):198–211. [PubMed] [Google Scholar]
  10. Emerit I., Michelson A. M. Chromosome instability in human and murine autoimmune disease: anticlastogenic effect of superoxide dismutase. Acta Physiol Scand Suppl. 1980;492:59–65. [PubMed] [Google Scholar]
  11. Emerit J., Loeper J., Chomette G. Superoxide dismutase in the treatment of post-radiotherapeutic necrosis and of Crohn's disease. Bull Eur Physiopathol Respir. 1981;17 (Suppl):287–287. [PubMed] [Google Scholar]
  12. Fielden E. M., Roberts P. B., Bray R. C., Lowe D. J., Mautner G. N., Rotilio G., Calabrese L. Mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis. Biochem J. 1974 Apr;139(1):49–60. doi: 10.1042/bj1390049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fliss H., Weissbach H., Brot N. Oxidation of methionine residues in proteins of activated human neutrophils. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7160–7164. doi: 10.1073/pnas.80.23.7160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gutteridge J. M., Hill C., Blake D. R. Copper stimulated phospholipid membrane peroxidation: antioxidant activity of serum and synovial fluid from patients with rheumatoid arthritis. Clin Chim Acta. 1984 May 16;139(1):85–90. doi: 10.1016/0009-8981(84)90195-5. [DOI] [PubMed] [Google Scholar]
  15. Hancock L. C., Hassan H. M. Regulation of the manganese-containing superoxide dismutase is independent of the inducible DNA repair system in Escherichia coli. J Biol Chem. 1985 Oct 25;260(24):12954–12956. [PubMed] [Google Scholar]
  16. Harman D. The aging process. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7124–7128. doi: 10.1073/pnas.78.11.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hexum T. D., Fried R. Effects of superoxide radicals on transport (Na + K) adenosine triphosphatase and protection by superoxide dismutase. Neurochem Res. 1979 Feb;4(1):73–82. doi: 10.1007/BF00963833. [DOI] [PubMed] [Google Scholar]
  18. Hodgson E. K., Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: chemiluminescence and peroxidation. Biochemistry. 1975 Dec 2;14(24):5299–5303. doi: 10.1021/bi00695a011. [DOI] [PubMed] [Google Scholar]
  19. Jówiak Z., Helszer Z. Participation of free oxygen radicals in damage of porcine erythrocytes. Radiat Res. 1981 Oct;88(1):11–19. [PubMed] [Google Scholar]
  20. Kellogg E. W., 3rd, Fridovich I. Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J Biol Chem. 1975 Nov 25;250(22):8812–8817. [PubMed] [Google Scholar]
  21. Kollmann G., Shapiro B., Martin D. The mechanism of radiation hemolysis in human erythrocytes. Radiat Res. 1969 Mar;37(3):551–566. [PubMed] [Google Scholar]
  22. Lavelle F., Michelson A. M., Dimitrijevic L. Biological protection by superoxide dismutase. Biochem Biophys Res Commun. 1973 Nov 16;55(2):350–357. doi: 10.1016/0006-291x(73)91094-2. [DOI] [PubMed] [Google Scholar]
  23. Lepock J. R., Arnold L. D., Petkau A., Kelly K. Interaction of superoxide dismutase with phospholipid liposomes. An uptake, spin label and calorimetric study. Biochim Biophys Acta. 1981 Nov 20;649(1):45–57. doi: 10.1016/0005-2736(81)90007-9. [DOI] [PubMed] [Google Scholar]
  24. Michelson A. M., Buckingham M. E. Effects of superoxide radicals on myoblast growth and differentiation. Biochem Biophys Res Commun. 1974 Jun 18;58(4):1079–1086. doi: 10.1016/s0006-291x(74)80254-8. [DOI] [PubMed] [Google Scholar]
  25. Miller R. C., Osmak R., Zimmerman M., Hall E. J. Sensitizers, protectors and oncogenic transformation in vitro. Int J Radiat Oncol Biol Phys. 1982 Mar-Apr;8(3-4):771–775. doi: 10.1016/0360-3016(82)90732-5. [DOI] [PubMed] [Google Scholar]
  26. Nordenson I., Beckman G., Beckman L. The effect of superoxide dismutase and catalase on radiation-induced chromosome breaks. Hereditas. 1976;82(1):125–126. doi: 10.1111/j.1601-5223.1976.tb01546.x. [DOI] [PubMed] [Google Scholar]
  27. Nordenson I. Effects of superoxide dismutase and catalase on radiation-induced chromosome aberrations: dose and cell cycle dependence. Hereditas. 1978;89(2):163–167. doi: 10.1111/j.1601-5223.1978.tb01271.x. [DOI] [PubMed] [Google Scholar]
  28. Ogura R., Murakata M., Sakata T., Chiba R. Effect of superoxide dismutase on the surface potential disorders of mitochondria treated with ultraviolet light exposed methyl linoleate. Kurume Med J. 1981;28(1):1–8. doi: 10.2739/kurumemedj.28.1. [DOI] [PubMed] [Google Scholar]
  29. Petkau A., Chelack W. S., Pleskach S. D. Protection by superoxide dismutase of white blood cells in X-irradiated mice. Life Sci. 1978 Mar;22(10):867–882. doi: 10.1016/0024-3205(78)90611-2. [DOI] [PubMed] [Google Scholar]
  30. Petkau A., Chelack W. S. Protection of Acholeplasma laidlawii B by superoxide dismutase. Int J Radiat Biol Relat Stud Phys Chem Med. 1974 Nov;26(5):421–426. doi: 10.1080/09553007414551441. [DOI] [PubMed] [Google Scholar]
  31. Petkau A., Chelack W. S. Radioprotection by superoxide dismutase of macrophage progenitor cells from mouse bone marrow. Biochem Biophys Res Commun. 1984 Mar 30;119(3):1089–1095. doi: 10.1016/0006-291x(84)90886-6. [DOI] [PubMed] [Google Scholar]
  32. Petkau A., Chelack W. S. Radioprotective effect of superoxide dismutase on model phospholipid membranes. Biochim Biophys Acta. 1976 May 21;433(3):445–456. doi: 10.1016/0005-2736(76)90272-8. [DOI] [PubMed] [Google Scholar]
  33. Petkau A., Kelly K., Chelack W. S., Pleskach S. D., Barefoot C., Meeker B. E. Radioprotection of bone marrow stem cells by superoxide dismutase. Biochem Biophys Res Commun. 1975 Dec 1;67(3):1167–1174. doi: 10.1016/0006-291x(75)90796-2. [DOI] [PubMed] [Google Scholar]
  34. Petkau A. Radiation protection by superoxide dismutase. Photochem Photobiol. 1978 Oct-Nov;28(4-5):765–774. doi: 10.1111/j.1751-1097.1978.tb07015.x. [DOI] [PubMed] [Google Scholar]
  35. Quinn P. J. The fluidity of cell membranes and its regulation. Prog Biophys Mol Biol. 1981;38(1):1–104. doi: 10.1016/0079-6107(81)90011-0. [DOI] [PubMed] [Google Scholar]
  36. Saito T., Ito K., Kurasaki M., Fujimoto S., Kaji H., Saito K. Determination of true specific activity of superoxide dismutase in human erythrocytes. Clin Sci (Lond) 1982 Sep;63(3):251–255. doi: 10.1042/cs0630251. [DOI] [PubMed] [Google Scholar]
  37. Sinet P. M. Metabolism of oxygen derivatives in down's syndrome. Ann N Y Acad Sci. 1982;396:83–94. doi: 10.1111/j.1749-6632.1982.tb26845.x. [DOI] [PubMed] [Google Scholar]
  38. Spikes J. D., Swartz H. M. International conference on singlet oxygen and related species in chemistry and biology: review and general discussion. Photochem Photobiol. 1978 Oct-Nov;28(4-5):921–933. doi: 10.1111/j.1751-1097.1978.tb07041.x. [DOI] [PubMed] [Google Scholar]
  39. Stone D., Lin P. S., Kwock L. Radiosensitization of human erythrocytes by diethyldithiocarbamate. Int J Radiat Biol Relat Stud Phys Chem Med. 1978 Apr;33(4):393–396. doi: 10.1080/09553007814550301. [DOI] [PubMed] [Google Scholar]
  40. Sutherland M. W., Gebicki J. M. A reaction between the superoxide free radical and lipid hydroperoxide in sodium linoleate micelles. Arch Biochem Biophys. 1982 Mar;214(1):1–11. doi: 10.1016/0003-9861(82)90001-7. [DOI] [PubMed] [Google Scholar]
  41. Sutherland R. M., Pihl A. Repair of radiation damage to erythrocyte membranes. The reduction of radiation-induced disulfide groups. Radiat Res. 1968 May;34(2):300–314. [PubMed] [Google Scholar]
  42. Tolmasoff J. M., Ono T., Cutler R. G. Superoxide dismutase: correlation with life-span and specific metabolic rate in primate species. Proc Natl Acad Sci U S A. 1980 May;77(5):2777–2781. doi: 10.1073/pnas.77.5.2777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Weiss S. J., Lampert M. B., Test S. T. Long-lived oxidants generated by human neutrophils: characterization and bioactivity. Science. 1983 Nov 11;222(4624):625–628. doi: 10.1126/science.6635660. [DOI] [PubMed] [Google Scholar]
  44. Yang S. F., Ku H. S., Pratt H. K. Photochemical production of ethylene from methionine and its analogues in the presence of flavin mononucleotide. J Biol Chem. 1967 Nov 25;242(22):5274–5280. [PubMed] [Google Scholar]

Articles from The British Journal of Cancer. Supplement are provided here courtesy of Cancer Research UK

RESOURCES