Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Feb;149(2):694–699. doi: 10.1128/jb.149.2.694-699.1982

Physical mapping and cloning of bacteriophage T4 anti-restriction endonuclease gene.

K Dharmalingam, H R Revel, E B Goldberg
PMCID: PMC216561  PMID: 6276366

Abstract

We have proposed that the ability of T4 to produce non-glucosylated progeny after a single cycle of growth on a galU rglA rglB+ mutant of Escherichia coli is due to the initiation of the rglB+ function by a phage-coded, anti-restriction endonuclease protein. Based on this hypothesis, we screened T4 deletion mutants for failure to give a burst in this host. The absence of an arn gene in phage mutants lacking the 55.5- to 58.4-kilobase region is verified by their inability to protect secondary infecting non-glucosylated phage from rglB-controlled cleavage. A functional arn gene was cloned on plasmid pBR325, and the 0.8-kilobase insert DNA was shown to be homologous to the DNA missing in the arn deletion phage.

Full text

PDF
697

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolivar F. Construction and characterization of new cloning vehicles. III. Derivatives of plasmid pBR322 carrying unique Eco RI sites for selection of Eco RI generated recombinant DNA molecules. Gene. 1978 Oct;4(2):121–136. doi: 10.1016/0378-1119(78)90025-2. [DOI] [PubMed] [Google Scholar]
  2. Brack C. Electron microscopic analysis of transcription: mapping of initiation sites and direction of transcription. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3164–3168. doi: 10.1073/pnas.76.7.3164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brooks J., Hattman S. Location of the DNA-adenine methylase gene on the genetic map of phage T2. Virology. 1973 Sep;55(1):285–288. doi: 10.1016/s0042-6822(73)81032-3. [DOI] [PubMed] [Google Scholar]
  4. Chace K. V., Hall D. H. Characterization of new regulatory mutants of bacteriophage T4. II. New class of mutants. J Virol. 1975 Apr;15(4):929–945. doi: 10.1128/jvi.15.4.929-945.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
  6. Dharmalingam K., Goldberg E. B. Mechanism localisation and control of restriction cleavage of phage T4 and lambda chromosomes in vivo. Nature. 1976 Apr 1;260(5550):406–410. doi: 10.1038/260406a0. [DOI] [PubMed] [Google Scholar]
  7. Dharmalingam K., Goldberg E. B. Phage-coded protein prevents restriction of unmodified progeny T4 DNA. Nature. 1976 Apr 1;260(5550):454–456. doi: 10.1038/260454a0. [DOI] [PubMed] [Google Scholar]
  8. Dharmalingam K., Goldberg E. B. Restriction in vivo. IV. Effect of restriction of parental DNA on the expression of restriction alleviation systems in phage T4. Virology. 1979 Jul 30;96(2):404–411. doi: 10.1016/0042-6822(79)90098-9. [DOI] [PubMed] [Google Scholar]
  9. Fleischman R. A., Cambell J. L., Richardson C. C. Modification and restriction of T-even bacteriophages. In vitro degradation of deoxyribonucleic acid containing 5-hydroxymethylctosine. J Biol Chem. 1976 Mar 25;251(6):1561–1570. [PubMed] [Google Scholar]
  10. HATTMAN S., FUKASAWA T. HOST-INDUCED MODIFICATION OF T-EVEN PHAGES DUE TO DEFECTIVE GLUCOSYLATION OF THEIR DNA. Proc Natl Acad Sci U S A. 1963 Aug;50:297–300. doi: 10.1073/pnas.50.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Homyk T., Jr, Weil J. Deletion analysis of two nonessential regions of the T4 genome. Virology. 1974 Oct;61(2):505–523. doi: 10.1016/0042-6822(74)90286-4. [DOI] [PubMed] [Google Scholar]
  12. Katz L., Kingsbury D. T., Helinski D. R. Stimulation by cyclic adenosine monophosphate of plasmid deoxyribonucleic acid replication and catabolite repression of the plasmid deoxyribonucleic acid-protein relaxation complex. J Bacteriol. 1973 May;114(2):577–591. doi: 10.1128/jb.114.2.577-591.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim J. S., Davidson N. Electron microscope heteroduplex study of sequence relations of T2, T4, and T6 bacteriophage DNAs. Virology. 1974 Jan;57(1):93–111. doi: 10.1016/0042-6822(74)90111-1. [DOI] [PubMed] [Google Scholar]
  14. Krylov V. N. A mutation of T4B phage, which enhances suppression of ligase mutants with rII mutations. Virology. 1972 Oct;50(1):291–293. doi: 10.1016/0042-6822(72)90375-3. [DOI] [PubMed] [Google Scholar]
  15. Krüger D. H., Schroeder C. Bacteriophage T3 and bacteriophage T7 virus-host cell interactions. Microbiol Rev. 1981 Mar;45(1):9–51. doi: 10.1128/mr.45.1.9-51.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mark K. K., Studier F. W. Purification of the gene 0.3 protein of bacteriophage T7, an inhibitor of the DNA restriction system of Escherichia coli. J Biol Chem. 1981 Mar 10;256(5):2573–2578. [PubMed] [Google Scholar]
  17. Revel H. R., Georgopoulos C. P. Restriction of nonglucosylated T-even bacteriophages by prophage P1. Virology. 1969 Sep;39(1):1–17. doi: 10.1016/0042-6822(69)90343-2. [DOI] [PubMed] [Google Scholar]
  18. Revel H. R., Luria S. E. DNA-glucosylation in T-even phage: genetic determination and role in phagehost interaction. Annu Rev Genet. 1970;4(0):177–192. doi: 10.1146/annurev.ge.04.120170.001141. [DOI] [PubMed] [Google Scholar]
  19. Revel H. R. Restriction of nonglucosylated T-even bacteriophage: properties of permissive mutants of Escherichia coli B and K12. Virology. 1967 Apr;31(4):688–701. doi: 10.1016/0042-6822(67)90197-3. [DOI] [PubMed] [Google Scholar]
  20. SHEDLOVSKY A., BRENNER S. A CHEMICAL BASIS FOR THE HOST-INDUCED MODIFICATION OF T-EVEN BACTERIOPHAGES. Proc Natl Acad Sci U S A. 1963 Aug;50:300–305. doi: 10.1073/pnas.50.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. STAHL F. W., EDGAR R. S., STEINBERG J. THE LINKAGE MAP OF BACTERIOPHAGE T4. Genetics. 1964 Oct;50:539–552. doi: 10.1093/genetics/50.4.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SYMONDS N., STACEY K. A., GLOVER S. W., SCHELL J., SILVER S. The chemical basis for a case of host-induced modification in phage T2. Biochem Biophys Res Commun. 1963 Jul 26;12:220–222. doi: 10.1016/0006-291x(63)90193-1. [DOI] [PubMed] [Google Scholar]
  23. Studier F. W. Gene 0.3 of bacteriophage T7 acts to overcome the DNA restriction system of the host. J Mol Biol. 1975 May 15;94(2):283–295. doi: 10.1016/0022-2836(75)90083-2. [DOI] [PubMed] [Google Scholar]
  24. Stüber D., Delius H., Bujard H. Electron microscopic analysis of in vitro transcriptional complexes: mapping of promoters of the coliphage T5 genome. Mol Gen Genet. 1978 Oct 30;166(2):141–149. doi: 10.1007/BF00285916. [DOI] [PubMed] [Google Scholar]
  25. Vallée M., De Lapeyrière O. The role of the genes imm and s in the development of immunity against T4 ghosts and exclusion of superinfecting phage in Escherichia coli infected with T4. Virology. 1975 Sep;67(1):219–233. doi: 10.1016/0042-6822(75)90419-5. [DOI] [PubMed] [Google Scholar]
  26. Wilson G. G., Tanyashin V. I., Murray N. E. Molecular cloning of fragments of bacteriophage T4 DNA. Mol Gen Genet. 1977 Nov 14;156(2):203–214. doi: 10.1007/BF00283493. [DOI] [PubMed] [Google Scholar]
  27. Wood W. B., Revel H. R. The genome of bacteriophage T4. Bacteriol Rev. 1976 Dec;40(4):847–868. doi: 10.1128/br.40.4.847-868.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES