Abstract
1. The present experiments were undertaken in order to characterize further the apparently irreversible inhibition of the contraction of depolarized rat aorta caused by lacidipine, a 1,4-dihydropyridine calcium antagonist. 2. We studied the effect of lacidipine on contraction evoked by 100 mM KCl solution in rat aorta, treated by N omega-nitro-L-arginine (0.1 mM), an inhibitor of nitric oxide (NO) synthesis. We compared the effect of prolonged depolarization on lacidipine and (+)-isradipine inhibition and the reversal of this inhibition after washout in the absence of dihydropyridines. Assuming that the onset of lacidipine-evoked inhibition was a pseudo-first order association kinetics, we estimated the dissociation rate constant (k-1 = 0.031 min-1), the association rate constant (k1 = 2.70 x 10(8) M-1 min-1) and the dissociation constant (KD = k-1/k1 = 115 pM) which was close to the IC50 value in steady-state conditions (160 pM). 3. The inhibitory effects of lacidipine and (+)-isradipine on rat aorta contraction were reversibly enhanced after preincubation with the drug in a 40 mM KCl-solution. Washout with drug-free 40 mM K(+)-depolarizing solution reversed inhibition in the (+)-isradipine-treated preparations, but not in the lacidipine-treated ones. 4. Radioligand binding studies were performed with [3H]-lacidipine and [3H]-isradipine in microsomes from rat aorta and rat ileum.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bean B. P., Sturek M., Puga A., Hermsmeyer K. Calcium channels in muscle cells isolated from rat mesenteric arteries: modulation by dihydropyridine drugs. Circ Res. 1986 Aug;59(2):229–235. doi: 10.1161/01.res.59.2.229. [DOI] [PubMed] [Google Scholar]
- Feron O., Wibo M., Christen M. O., Godfraind T. Interaction of pinaverium (a quaternary ammonium compound) with 1,4-dihydropyridine binding sites in rat ileum smooth muscle. Br J Pharmacol. 1992 Feb;105(2):480–484. doi: 10.1111/j.1476-5381.1992.tb14279.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glossmann H., Ferry D. R., Goll A., Striessnig J., Zernig G. Calcium channels and calcium channel drugs: recent biochemical and biophysical findings. Arzneimittelforschung. 1985;35(12A):1917–1935. [PubMed] [Google Scholar]
- Godfraind T., Burton J. Inhibition by prednisolon-bisguanylhydrazone of desensitization and of potassium loss produced by acetylcholine in intestinal smooth muscle. Arch Int Pharmacodyn Ther. 1967 Mar;166(1):216–224. [PubMed] [Google Scholar]
- Godfraind T., Miller R., Wibo M. Calcium antagonism and calcium entry blockade. Pharmacol Rev. 1986 Dec;38(4):321–416. [PubMed] [Google Scholar]
- Godfraind T., Salomone S. Functional interaction of lacidipine with calcium channels in vascular smooth muscle. J Cardiovasc Pharmacol. 1991;18 (Suppl 11):S1–S6. doi: 10.1097/00005344-199102001-00001. [DOI] [PubMed] [Google Scholar]
- Kass R. S., Arena J. P., Chin S. Block of L-type calcium channels by charged dihydropyridines. Sensitivity to side of application and calcium. J Gen Physiol. 1991 Jul;98(1):63–75. doi: 10.1085/jgp.98.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenakin T. P. The classification of drugs and drug receptors in isolated tissues. Pharmacol Rev. 1984 Sep;36(3):165–222. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mason R. P., Moisey D. M., Shajenko L. Cholesterol alters the binding of Ca2+ channel blockers to the membrane lipid bilayer. Mol Pharmacol. 1992 Feb;41(2):315–321. [PubMed] [Google Scholar]
- Micheli D., Collodel A., Semeraro C., Gaviraghi G., Carpi C. Lacidipine: a calcium antagonist with potent and long-lasting antihypertensive effects in animal studies. J Cardiovasc Pharmacol. 1990 Apr;15(4):666–675. [PubMed] [Google Scholar]
- Moore P. K., al-Swayeh O. A., Chong N. W., Evans R. A., Gibson A. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol. 1990 Feb;99(2):408–412. doi: 10.1111/j.1476-5381.1990.tb14717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morel N., Godfraind T. Characterization in rat aorta of the binding sites responsible for blockade of noradrenaline-evoked calcium entry by nisoldipine. Br J Pharmacol. 1991 Feb;102(2):467–477. doi: 10.1111/j.1476-5381.1991.tb12196.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morel N., Godfraind T. Prolonged depolarization increases the pharmacological effect of dihydropyridines and their binding affinity for calcium channels of vascular smooth muscle. J Pharmacol Exp Ther. 1987 Nov;243(2):711–715. [PubMed] [Google Scholar]
- Morel N., Godfraind T. Selective modulation by membrane potential of the interaction of some calcium entry blockers with calcium channels in rat mesenteric artery. Br J Pharmacol. 1988 Sep;95(1):252–258. doi: 10.1111/j.1476-5381.1988.tb16571.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morel N., Wibo M., Godfraind T. A calmodulin-stimulated Ca2+ pump in rat aorta plasma membranes. Biochim Biophys Acta. 1981 Jun 9;644(1):82–88. doi: 10.1016/0005-2736(81)90061-4. [DOI] [PubMed] [Google Scholar]
- Nakayama H., Taki M., Striessnig J., Glossmann H., Catterall W. A., Kanaoka Y. Identification of 1,4-dihydropyridine binding regions within the alpha 1 subunit of skeletal muscle Ca2+ channels by photoaffinity labeling with diazipine. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9203–9207. doi: 10.1073/pnas.88.20.9203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rhodes D. G., Sarmiento J. G., Herbette L. G. Kinetics of binding of membrane-active drugs to receptor sites. Diffusion-limited rates for a membrane bilayer approach of 1,4-dihydropyridine calcium channel antagonists to their active site. Mol Pharmacol. 1985 Jun;27(6):612–623. [PubMed] [Google Scholar]
- Salomone S., Wibo M., Morel N., Godfraind T. Binding sites for 1,4-dihydropyridine Ca(2+)-channel modulators in rat intestinal smooth muscle. Naunyn Schmiedebergs Arch Pharmacol. 1991 Dec;344(6):698–705. doi: 10.1007/BF00174754. [DOI] [PubMed] [Google Scholar]
- Sanguinetti M. C., Kass R. S. Voltage-dependent block of calcium channel current in the calf cardiac Purkinje fiber by dihydropyridine calcium channel antagonists. Circ Res. 1984 Sep;55(3):336–348. doi: 10.1161/01.res.55.3.336. [DOI] [PubMed] [Google Scholar]
- Striessnig J., Glossmann H., Catterall W. A. Identification of a phenylalkylamine binding region within the alpha 1 subunit of skeletal muscle Ca2+ channels. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9108–9112. doi: 10.1073/pnas.87.23.9108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Striessnig J., Scheffauer F., Mitterdorfer J., Schirmer M., Glossmann H. Identification of the benzothiazepine-binding polypeptide of skeletal muscle calcium channels with (+)-cis-azidodiltiazem and anti-ligand antibodies. J Biol Chem. 1990 Jan 5;265(1):363–370. [PubMed] [Google Scholar]
- Uehara A., Hume J. R. Interactions of organic calcium channel antagonists with calcium channels in single frog atrial cells. J Gen Physiol. 1985 May;85(5):621–647. doi: 10.1085/jgp.85.5.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiland G. A., Molinoff P. B. Quantitative analysis of drug-receptor interactions: I. Determination of kinetic and equilibrium properties. Life Sci. 1981 Jul 27;29(4):313–330. doi: 10.1016/0024-3205(81)90324-6. [DOI] [PubMed] [Google Scholar]
- Wibo M., DeRoth L., Godfraind T. Pharmacologic relevance of dihydropyridine binding sites in membranes from rat aorta: kinetic and equilibrium studies. Circ Res. 1988 Jan;62(1):91–96. doi: 10.1161/01.res.62.1.91. [DOI] [PubMed] [Google Scholar]
- Wibo M., Duong A. T., Godfraind T. Subcellular location of semicarbazide-sensitive amine oxidase in rat aorta. Eur J Biochem. 1980 Nov;112(1):87–94. doi: 10.1111/j.1432-1033.1980.tb04990.x. [DOI] [PubMed] [Google Scholar]