Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Mar;137(3):1134–1139. doi: 10.1128/jb.137.3.1134-1139.1979

Morphology-associated expression nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Mucorracemosus.

J Peters, P S Sypherd
PMCID: PMC218292  PMID: 35513

Abstract

The in vivo regulation of glutamate dehydrogenase (GDH) was studied in Mucor racemosus as a function of nutritional conditions and morphological state. Both nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP)-dependent GDH activities were found. The effect of carbon and nitrogen source on the specific activity of the NAD-dependent GDH suggests that its role is primarily catabolic. The NAD-dependent activity was generally an order of magnitude greater in mycelial cells than in yeast-phase cells grown on the same medium. During yeast-to-hyphal morphogenesis the increase in NAD-dependent activity preceded the appearance of hyphal cells both under aerobic and anaerobic conditions. Exogenous dibutyryl-cyclic AMP prevented the increase in NAD-dependent GDH concomitantly with the suppression of morphological differentiation. The NADP-dependent activity did not change appreciably during morphogenesis.

Full text

PDF
1135

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTNICKI-GARCIA S., NICKERSON W. J. Induction of yeast-like development in Mucor by carbon dioxide. J Bacteriol. 1962 Oct;84:829–840. doi: 10.1128/jb.84.4.829-840.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARTNICKI-GARCIA S., NICKERSON W. J. Nutrition, growth, and morphogenesis of Mucor rouxii. J Bacteriol. 1962 Oct;84:841–858. doi: 10.1128/jb.84.4.841-858.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Elmer G. W., Nickerson W. J. Nutritional requirements for growth and yeastlike development of Mucor rouxii under carbon dioxide. J Bacteriol. 1970 Feb;101(2):595–602. doi: 10.1128/jb.101.2.595-602.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grenson M., Dubois E., Piotrowska M., Drillien R., Aigle M. Ammonia assimilation in Saccharomyces cerevisiae as mediated by the two glutamate dehydrogenases. Evidence for the gdhA locus being a structural gene for the NADP-dependent glutamate dehydrogenase. Mol Gen Genet. 1974;128(1):73–85. doi: 10.1007/BF00267295. [DOI] [PubMed] [Google Scholar]
  5. Hynes M. J. The effects of carbon source on glutamate dehydrogenase activities in Aspergillus nidulans. J Gen Microbiol. 1974 Mar;81(1):165–170. doi: 10.1099/00221287-81-1-165. [DOI] [PubMed] [Google Scholar]
  6. Kapoor M., Grover A. K. Catabolite-controlled regulation of glutamate dehydrogenases of Neurospora crassa. Can J Microbiol. 1970 Jan;16(1):33–40. doi: 10.1139/m70-006. [DOI] [PubMed] [Google Scholar]
  7. Kinghorn J. R., Pateman J. A. NAD and NADP l-glutamate dehydrogenase activity and ammonium regulation in Aspergillus nidulans. J Gen Microbiol. 1973 Sep;78(1):39–46. doi: 10.1099/00221287-78-1-39. [DOI] [PubMed] [Google Scholar]
  8. Larsen A. D., Sypherd P. S. Cyclic adenosine 3',5'-monophosphate and morphogenesis in Mucor racemosus. J Bacteriol. 1974 Feb;117(2):432–438. doi: 10.1128/jb.117.2.432-438.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. MAGASANIK B. Catabolite repression. Cold Spring Harb Symp Quant Biol. 1961;26:249–256. doi: 10.1101/sqb.1961.026.01.031. [DOI] [PubMed] [Google Scholar]
  10. Mooney D. T., Sypherd P. S. Volatile factor involved in the dimorphism of Mucor racemosus. J Bacteriol. 1976 Jun;126(3):1266–1270. doi: 10.1128/jb.126.3.1266-1270.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nuñez de Castro I., Ugarte M., Cano A., Mayor F. Effect of glucose, galactose, and different nitrogen-sources on the activity of yeast glutamate dehydrogenase (NAD and NADP-linked) from normal strain and impaired respiration mutant. Eur J Biochem. 1970 Nov;16(3):567–570. doi: 10.1111/j.1432-1033.1970.tb01118.x. [DOI] [PubMed] [Google Scholar]
  12. Orlowski M., Sypherd P. S. Protein synthesis during morphogenesis of Mucor racemosus. J Bacteriol. 1977 Oct;132(1):209–218. doi: 10.1128/jb.132.1.209-218.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Paznokas J. L., Sypherd P. S. Respiratory capacity, cyclic adenosine 3',5'-monophosphate, and morphogenesis of Mucor racemosus. J Bacteriol. 1975 Oct;124(1):134–139. doi: 10.1128/jb.124.1.134-139.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Roon R. J., Even H. L. Regulation of the nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenases of Saccharomyces cerevisiae. J Bacteriol. 1973 Oct;116(1):367–372. doi: 10.1128/jb.116.1.367-372.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SANWAL B. D., LATA M. Effect of glutamic acid on the formation of two glutamic acid dehydrogenases of Neurospora. Biochem Biophys Res Commun. 1962 Jan 24;6:404–409. doi: 10.1016/0006-291x(62)90364-9. [DOI] [PubMed] [Google Scholar]
  16. SANWAL B. D., LATA M. Glutamic dehydrogenase in single-gene mutants of Neurospora deficient in amination. Nature. 1961 Apr 15;190:286–287. doi: 10.1038/190286a0. [DOI] [PubMed] [Google Scholar]
  17. Stevenson R. M., LéJohn H. B. Glutamic dehydrogenases of Oomycetes. Kinetic mechanism and possible vvolutionary history. J Biol Chem. 1971 Apr 10;246(7):2127–2135. [PubMed] [Google Scholar]
  18. Storck R., Morrill R. C. Respiratory-deficient, yeastlike mutant of Mucor. Biochem Genet. 1971 Oct;5(5):467–479. doi: 10.1007/BF00487136. [DOI] [PubMed] [Google Scholar]
  19. Thomulka K. W., Moat A. G. Inorganic nitrogen assimilation in yeasts: alteration in enzyme activities associated with changes in cultural conditions and growth phase. J Bacteriol. 1972 Jan;109(1):25–33. doi: 10.1128/jb.109.1.25-33.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES