Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Oct;132(1):209–218. doi: 10.1128/jb.132.1.209-218.1977

Protein Synthesis During Morphogenesis of Mucor racemosus

Michael Orlowski 1, Paul S Sypherd 1
PMCID: PMC221846  PMID: 914775

Abstract

Cells of Mucor racemosus were labeled with l-[14C]leucine during the yeast-to-hyphae morphogenesis that follows a change of atmosphere from CO2 to air. Pulse-labeling kinetics and the steady-state accumulation of incorporated l-[14C]leucine were determined throughout the period of cellular differentiation. We determined that the l-[14C]leucine was taken up by all forms of the organism, was not altered from the form of l-leucine, and was incorporated exclusively into protein. The intracellular pool of free l-leucine was small in comparison with those of the other l-amino acids, remained relatively constant in size during morphogenesis, and was rapidly equilibrated with exogenous leucine. Approximately the same internal radiospecific activities were attained throughout development shortly after addition of l-[14C]leucine to a culture. Experiments performed with leucine auxotrophs suggested that endogenous synthesis of leucine in prototrophs does not affect the measured rates of incorporation. Experiments performed with 14C-labeled l-isoleucine, l-proline, l-lysine, and l-arginine produced results qualitatively the same as with l-leucine. The accumulation of incorporated l-[14C]leucine in a culture of M. racemosus undergoing the air-induced yeast-to-hyphae transition reflected the change in growth rate that accompanied the morphogenesis. However, the specific rate of protein synthesis measured throughout the developmental process displayed a characteristic acceleration during the emergence of germ tubes which was followed by a decline when all further growth took the form of hyphal elongation. Data are presented suggesting that this response is a correlate of morphogenesis rather than a consequence of the atmospheric change per se.

Full text

PDF
217

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTNICKI-GARCIA S., NICKERSON W. J. Isolation, composition, and structure of cell walls of filamentous and yeast-like forms of Mucor rouxii. Biochim Biophys Acta. 1962 Mar 26;58:102–119. doi: 10.1016/0006-3002(62)90822-3. [DOI] [PubMed] [Google Scholar]
  2. Bernlohr R. W. 18 Oxygen probes of protein turnover, amino acid transport, and protein synthesis in Bacillus licheniformis. J Biol Chem. 1972 Aug 10;247(15):4893–4899. [PubMed] [Google Scholar]
  3. Bernlohr R. W. Changes in amino acid permeation during sporulation. J Bacteriol. 1967 Mar;93(3):1031–1044. doi: 10.1128/jb.93.3.1031-1044.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COWIE D. B., McCLURE F. T. Metabolic pools and the synthesis of macromolecules. Biochim Biophys Acta. 1959 Jan;31(1):236–245. doi: 10.1016/0006-3002(59)90460-3. [DOI] [PubMed] [Google Scholar]
  5. Crabeel M., Grenson M. Regulation of histidine uptake by specific feedback inhibition of two histidine permeases in Saccharomyces cerevisiae. Eur J Biochem. 1970 May 1;14(1):197–204. doi: 10.1111/j.1432-1033.1970.tb00278.x. [DOI] [PubMed] [Google Scholar]
  6. Fry B. J., Gross P. R. Patterns and rates of protein synthesis in sea urchin embryos. II. The calculation of absolute rates. Dev Biol. 1970 Feb;21(1):125–146. doi: 10.1016/0012-1606(70)90065-5. [DOI] [PubMed] [Google Scholar]
  7. Hall M. J., Kolankaya N. The physiology of mould-yeast dimorphism in the genus Mycotypha (Mucorales). J Gen Microbiol. 1974 May;82(1):25–34. doi: 10.1099/00221287-82-1-25. [DOI] [PubMed] [Google Scholar]
  8. Hod Y., Hershko A. Relationship of the pool of intracellular valine to protein synthesis and degradation in cultured cells. J Biol Chem. 1976 Jul 25;251(14):4458–4457. [PubMed] [Google Scholar]
  9. Hopper A. K., Magee P. T., Welch S. K., Friedman M., Hall B. D. Macromolecule synthesis and breakdown in relation to sporulation and meiosis in yeast. J Bacteriol. 1974 Aug;119(2):619–628. doi: 10.1128/jb.119.2.619-628.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KANFER J., KENNEDY E. P. METABOLISM AND FUNCTION OF BACTERIAL LIPIDS. I. METABOLISM OF PHOSPHOLIPIDS IN ESCHERICHIA COLI B. J Biol Chem. 1963 Sep;238:2919–2922. [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Larsen A. D., Sypherd P. S. Cyclic adenosine 3',5'-monophosphate and morphogenesis in Mucor racemosus. J Bacteriol. 1974 Feb;117(2):432–438. doi: 10.1128/jb.117.2.432-438.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MATCHETT W. H., DEMOSS J. A. PHYSIOLOGICAL CHANNELING OF TRYPTOPHAN IN NEUROSPORA CRASSA. Biochim Biophys Acta. 1964 Apr 4;86:91–99. doi: 10.1016/0304-4165(64)90162-x. [DOI] [PubMed] [Google Scholar]
  14. Mooney D. T., Sypherd P. S. Volatile factor involved in the dimorphism of Mucor racemosus. J Bacteriol. 1976 Jun;126(3):1266–1270. doi: 10.1128/jb.126.3.1266-1270.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Orlowski M., Sypherd P. S. Cyclic guanosine 3',5'-monophosphate in the dimorphic fungus Mucor racemosus. J Bacteriol. 1976 Mar;125(3):1226–1228. doi: 10.1128/jb.125.3.1226-1228.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Paznokas J. L., Sypherd P. S. Respiratory capacity, cyclic adenosine 3',5'-monophosphate, and morphogenesis of Mucor racemosus. J Bacteriol. 1975 Oct;124(1):134–139. doi: 10.1128/jb.124.1.134-139.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schulz B. E., Kraepelin G., Hinkelmann W. Factors affecting dimorphism in Mycotypha (Mucorales): a correlation with the fermentation-respiration equilibrium. J Gen Microbiol. 1974 May;82(1):1–13. doi: 10.1099/00221287-82-1-1. [DOI] [PubMed] [Google Scholar]
  18. Terenzi H. F., Storck R. Stimulation of fermentation and yeast-like morphogenesis in Mucor rouxii by phenethyl alcohol. J Bacteriol. 1969 Mar;97(3):1248–1261. doi: 10.1128/jb.97.3.1248-1261.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Timberlake W. E. Alterations in RNA and protein synthesis associated with steroid hormone-induced sexual morphogenesis in the water mold Achlya. Dev Biol. 1976 Jul 15;51(2):202–214. doi: 10.1016/0012-1606(76)90138-x. [DOI] [PubMed] [Google Scholar]
  20. Weiss R. L. Compartmentation and control of arginine metabolism in Neurospora. J Bacteriol. 1976 Jun;126(3):1173–1179. doi: 10.1128/jb.126.3.1173-1179.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weiss R. L., Davis R. H. Control of arginine utilization in Neurospora. J Bacteriol. 1977 Feb;129(2):866–873. doi: 10.1128/jb.129.2.866-873.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wiemken A., Dürr M. Characterization of amino acid pools in the vacuolar compartment of Saccharomyces cerevisiae. Arch Microbiol. 1974;101(1):45–57. doi: 10.1007/BF00455924. [DOI] [PubMed] [Google Scholar]
  23. ZALOKAR M. Kinetics of amino acid uptake and protein synthesis in Neurospora. Biochim Biophys Acta. 1961 Jan 29;46:423–432. doi: 10.1016/0006-3002(61)90573-x. [DOI] [PubMed] [Google Scholar]
  24. Zorzopulos J., Jobbagy A. J., Terenzi H. F. Effects of ethylenediaminetetraacetate and chloramphenicol on mitochondrial activity and morphogenesis in Mucor rouxii. J Bacteriol. 1973 Sep;115(3):1198–1204. doi: 10.1128/jb.115.3.1198-1204.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES