Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1959 Jun;45(6):772–785. doi: 10.1073/pnas.45.6.772

ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. INFLUENCE OF BACTERIOPHAGE T2 ON THE SYNTHETIC PATHWAY IN HOST CELLS*

Arthur Kornberg 1, Steven B Zimmerman 1,, S R Kornberg 1, John Josse 1,
PMCID: PMC222636  PMID: 16590443

Full text

PDF
785

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler J., Lehman I. R., Bessman M. J., Simms E. S., Kornberg A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. IV. LINKAGE OF SINGLE DEOXYNUCLEOTIDES TO THE DEOXYNUCLEOSIDE ENDS OF DEOXYRIBONUCLEIC ACID. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):641–647. doi: 10.1073/pnas.44.7.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson E. H. Growth Requirements of Virus-Resistant Mutants of Escherichia Coli Strain "B". Proc Natl Acad Sci U S A. 1946 May;32(5):120–128. doi: 10.1073/pnas.32.5.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BESSMAN M. J., LEHMAN I. R., SIMMS E. S., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. II. General properties of the reaction. J Biol Chem. 1958 Jul;233(1):171–177. [PubMed] [Google Scholar]
  4. BURTON K. The relation between the synthesis of deoxyribonucleic acid and the synthesis of protein in the multiplication of bacteriophage T2. Biochem J. 1955 Nov;61(3):473–483. doi: 10.1042/bj0610473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bessman M. J., Lehman I. R., Adler J., Zimmerman S. B., Simms E. S., Kornberg A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. III. THE INCORPORATION OF PYRIMIDINE AND PURINE ANALOGUES INTO DEOXYRIBONUCLEIC ACID. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):633–640. doi: 10.1073/pnas.44.7.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DOERMANN A. H. The intracellular growth of bacteriophages. I. Liberation of intracellular bacteriophage T4 by premature lysis with another phage or with cyanide. J Gen Physiol. 1952 Mar;35(4):645–656. doi: 10.1085/jgp.35.4.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DUNN D. B., SMITH J. D., ZAMENHOF S., GRIBOFF G. Incorporation of halogenated pyrimidines into the deoxyribonucleic acids of Bacterium coli and its bacteriophages. Nature. 1954 Aug 14;174(4424):305–307. [PubMed] [Google Scholar]
  8. FLAKS J. G., COHEN S. S. The enzymic synthesis of 5-hydroxymethyldeoxycytidylic acid. Biochim Biophys Acta. 1957 Sep;25(3):667–668. doi: 10.1016/0006-3002(57)90553-x. [DOI] [PubMed] [Google Scholar]
  9. Glaser L., Brown D. H. THE ENZYMATIC SYNTHESIS IN VITRO OF HYALURONIC ACID CHAINS. Proc Natl Acad Sci U S A. 1955 May 15;41(5):253–260. doi: 10.1073/pnas.41.5.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HERSHEY A. D., DIXON J., CHASE M. Nucleic acid economy in bacteria infected with bacteriophage T2. I. Purine and pyrimidine composition. J Gen Physiol. 1953 Jul;36(6):777–789. doi: 10.1085/jgp.36.6.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HERSHEY A. D., MELECHEN N. E. Synthesis of phage-precursor nucleic acid in the presence of chloramphenicol. Virology. 1957 Feb;3(1):207–236. doi: 10.1016/0042-6822(57)90034-x. [DOI] [PubMed] [Google Scholar]
  12. JESAITIS M. A. The nucleic acids of T2, T4, and T6 bacteriophages. J Exp Med. 1957 Aug 1;106(2):233–246. doi: 10.1084/jem.106.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LEHMAN I. R., BESSMAN M. J., SIMMS E. S., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J Biol Chem. 1958 Jul;233(1):163–170. [PubMed] [Google Scholar]
  14. Lehman I. R., Zimmerman S. B., Adler J., Bessman M. J., Simms E. S., Kornberg A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. V. CHEMICAL COMPOSITION OF ENZYMATICALLY SYNTHESIZED DEOXYRIBONUCLEIC ACID. Proc Natl Acad Sci U S A. 1958 Dec 15;44(12):1191–1196. doi: 10.1073/pnas.44.12.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PARDEE A. B., KUNKEE R. E. Enzyme activity and bacteriophage infection. II. Activities before and after virus infection. J Biol Chem. 1952 Nov;199(1):9–24. [PubMed] [Google Scholar]
  16. ROTMAN B., SPIEGELMAN S. On the origin of the carbon in the induced synthesis beta-galactosidase in Escherichia coli. J Bacteriol. 1954 Oct;68(4):419–429. doi: 10.1128/jb.68.4.419-429.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SINSHEIMER R. L. Nucleotides from T2r+ bacteriophage. Science. 1954 Oct 8;120(3119):551–553. doi: 10.1126/science.120.3119.551. [DOI] [PubMed] [Google Scholar]
  18. Sinsheimer R. L. THE GLUCOSE CONTENT OF THE DEOXYRIBONUCLEIC ACIDS OF CERTAIN BACTERIOPHAGES. Proc Natl Acad Sci U S A. 1956 Aug;42(8):502–504. doi: 10.1073/pnas.42.8.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Streisinger G., Weigle J. PROPERTIES OF BACTERIOPHAGES T2 AND T4 WITH UNUSUAL INHERITANCE. Proc Natl Acad Sci U S A. 1956 Aug;42(8):504–510. doi: 10.1073/pnas.42.8.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. TOMIZAWA J. I., SUNAKAWA S. The effect of chloramphenicol on deoxyribonucleic acid synthesis and the development of resistance to ultraviolet irradiation in E. coli infected with bacteriophage T2. J Gen Physiol. 1956 Mar 20;39(4):553–565. doi: 10.1085/jgp.39.4.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WYATT G. R., COHEN S. S. The bases of the nucleic acids of some bacterial and animal viruses: the occurrence of 5-hydroxymethylcytosine. Biochem J. 1953 Dec;55(5):774–782. doi: 10.1042/bj0550774. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES