Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Apr;62(4):1137–1144. doi: 10.1073/pnas.62.4.1137

MULTIPLE PHENYLALANYL-TRANSFER RIBONUCLEIC ACID SYNTHETASE ACTIVITIES IN THE CYTOPLASM OF Neurospora crassa*

Fredrick J Kull 1,, K Bruce Jacobson 1
PMCID: PMC223625  PMID: 5256412

Abstract

Several tRNA's specific for a particular amino acid have been shown to exist in multiple, or isoaccepting, forms. There is considerable interest in establishing whether multiple aminoacyl-tRNA synthetases also exist. We present evidence that the cytoplasm of Neurospora crassa contains three chromatographically separable phenylalanyl-tRNA synthetases distinct from mitochondrial phenylalanyl-tRNA synthetase. In addition to differences in chromatographic properties the three enzymes exhibit different affinities, in Tris-Cl buffer, toward purified species of valine and alanine tRNA's isolated from Escherichia coli. The two major chromatographic fractions have very similar sedimentation characteristics, which makes a monomer-dimer relationship unlikely.

Full text

PDF
1144

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARNETT W. E., JACOBSON K. B. EVIDENCE FOR DEGENERACY AND AMBIGUITY IN INTERSPECIES AMINOACYL-SRNA FORMATION. Proc Natl Acad Sci U S A. 1964 Apr;51:642–647. doi: 10.1073/pnas.51.4.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BOLLUM F. J. Thermal conversion of nonpriming deoxyribonucleic acid to primer. J Biol Chem. 1959 Oct;234:2733–2734. [PubMed] [Google Scholar]
  3. Barnett W. E., Brown D. H., Epler J. L. Mitochondrial-specific aminoacyl-RNA synthetases. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1775–1781. doi: 10.1073/pnas.57.6.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnett W. E., Brown D. H. Mitochondrial transfer ribonucleic acids. Proc Natl Acad Sci U S A. 1967 Feb;57(2):452–458. doi: 10.1073/pnas.57.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barnett W. E., Epler J. L. Fractionation and specificities of two aspartyl-ribonucleic acid and two phenylalanyl-ribonucleic acid synthetases. Proc Natl Acad Sci U S A. 1966 Jan;55(1):184–189. doi: 10.1073/pnas.55.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barnett W. E. Interspecies aminoacyl-sRNA formation: fractionation of Neurospora enzymes involved in anomalous aminoacylation. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1462–1467. doi: 10.1073/pnas.53.6.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Böck A. Relation between subunit structure and temperature-sensitivity of mutant phenylalanyl RNA synthetases of Escherichia coli. Eur J Biochem. 1968 Apr;4(3):395–400. doi: 10.1111/j.1432-1033.1968.tb00225.x. [DOI] [PubMed] [Google Scholar]
  8. Cassio D., Waller J. P. Etude la méthionyl-tRNA synthétase d'Escherichia coli. 3. Dissociation en sous-unités actives par action d'un facteur extrinsèque. Eur J Biochem. 1968 Jun;5(1):33–41. doi: 10.1111/j.1432-1033.1968.tb00333.x. [DOI] [PubMed] [Google Scholar]
  9. Holten V. Z., Jacobson K. B. Studies on the aminoacylation of valine- and alanine-specific transfer RNA of Escherichia coli by aminoacyl transfer RNA synthetases from Neurospora crassa and E. coli. Arch Biochem Biophys. 1969 Jan;129(1):283–289. doi: 10.1016/0003-9861(69)90177-5. [DOI] [PubMed] [Google Scholar]
  10. Imamoto F., Yamane T., Sueoka N. Existence of two phenylalanyl-sRNA synthetases in Neurospora crassa. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1456–1462. doi: 10.1073/pnas.53.6.1456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kelmers A. D., Novelli G. D., Stulberg M. P. Separation of transfer ribonucleic acids by reverse phase chromatography. J Biol Chem. 1965 Oct;240(10):3979–3983. [PubMed] [Google Scholar]
  12. National Academy of Sciences: Abstracts of papers presented at the autumn meeting, Durham, North Carolina, 17-19 October 1966. Science. 1966 Oct 21;154(3747):417–430. doi: 10.1126/science.154.3747.417. [DOI] [PubMed] [Google Scholar]
  13. Pearson R. L., Kelmers A. D. Separation of transfer ribonucleic acids by hydroxyapatite columns. J Biol Chem. 1966 Feb 10;241(3):767–769. [PubMed] [Google Scholar]
  14. Strehler B. L., Hendley D. D., Hirsch G. P. Evidence of a codon restriction hypothesis of cellular differentiation: multiplicity of mammalian leucyl-sRNA-specific synthetases and tissue-specific deficiency in an alanyl-sRNA synthetase. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1751–1758. doi: 10.1073/pnas.57.6.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stulberg M. P. The isolation and properties of phenylalanyl ribonucleic acid synthetase from Escherichia coli B. J Biol Chem. 1967 Mar 10;242(5):1060–1064. [PubMed] [Google Scholar]
  16. Sumner J. B. A METHOD FOR THE COLORIMETRIC DETERMINATION OF PHOSPHORUS. Science. 1944 Nov 3;100(2601):413–414. doi: 10.1126/science.100.2601.413. [DOI] [PubMed] [Google Scholar]
  17. Vescia A. Separation of two leucyl-ribonucleic acid synthetases from rat liver. Biochem Biophys Res Commun. 1967 Nov 30;29(4):496–500. doi: 10.1016/0006-291x(67)90511-6. [DOI] [PubMed] [Google Scholar]
  18. Weiss J. F., Kelmers A. D. A new chromatographic system for increased resolution of transfer ribonucleic acids. Biochemistry. 1967 Aug;6(8):2507–2513. doi: 10.1021/bi00860a030. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES