Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1985 Jan;49(1):211–216. doi: 10.1128/aem.49.1.211-216.1985

Degradation of Dehydrodivanillin by Anaerobic Bacteria from Cow Rumen Fluid

Wei Chen 1, Kunio Ohmiya 1,*, Shoichi Shimizu 1, Hidekuni Kawakami 1
PMCID: PMC238372  PMID: 16346698

Abstract

Dehydrodivanillin (DDV; 0.15 g/liter) was biodegradable at 37°C under strictly anaerobic conditions by microflora from cow rumen fluid to the extent of 25% within 2 days in a yeast extract medium. The anaerobes were acclimated on DDV for 2 weeks, leading to DDV-degrading microflora with rates of degradation eight times higher than those initially. Dehydrodivanillic acid and vanillic acid were detected in an ethylacetate extract of a DDV-enriched culture broth by thin-layer, gas, and high-performance liquid chromatographies and by mass spectrometry.

Full text

PDF
215

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akin D. E. Attack on lignified grass cell walls by a facultatively anaerobic bacterium. Appl Environ Microbiol. 1980 Oct;40(4):809–820. doi: 10.1128/aem.40.4.809-820.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CLARK F. M., FINA L. R. The anaerobic decomposition of benzoic acid during methane fermentation. Arch Biochem Biophys. 1952 Mar;36(1):26–32. doi: 10.1016/0003-9861(52)90374-3. [DOI] [PubMed] [Google Scholar]
  3. Dutton P. L., Evans W. C. The metabolism of aromatic compounds by Rhodopseudomonas palustris. A new, reductive, method of aromatic ring metabolism. Biochem J. 1969 Jul;113(3):525–536. doi: 10.1042/bj1130525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. EVANS W. C. THE MICROBIOLOGICAL DEGRADATION OF AROMATIC COMPOUNDS. J Gen Microbiol. 1963 Aug;32:177–184. doi: 10.1099/00221287-32-2-177. [DOI] [PubMed] [Google Scholar]
  5. Evans W. C. Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature. 1977 Nov 3;270(5632):17–22. doi: 10.1038/270017a0. [DOI] [PubMed] [Google Scholar]
  6. FINA L. R., FISKIN A. M. The anaerobic decomposition of benzoic acid during methane fermentation. II. Fate of carbons one and seven. Arch Biochem Biophys. 1960 Dec;91:163–165. doi: 10.1016/0003-9861(60)90483-5. [DOI] [PubMed] [Google Scholar]
  7. Healy J. B., Jr, Young L. Y. Catechol and phenol degradation by a methanogenic population of bacteria. Appl Environ Microbiol. 1978 Jan;35(1):216–218. doi: 10.1128/aem.35.1.216-218.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Healy J. B., Young L. Y. Anaerobic biodegradation of eleven aromatic compounds to methane. Appl Environ Microbiol. 1979 Jul;38(1):84–89. doi: 10.1128/aem.38.1.84-89.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Healy J. B., Young L. Y., Reinhard M. Methanogenic decomposition of ferulic Acid, a model lignin derivative. Appl Environ Microbiol. 1980 Feb;39(2):436–444. doi: 10.1128/aem.39.2.436-444.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Janshekar H., Fiechter A. Lignin: biosynthesis, application, and biodegradation. Adv Biochem Eng Biotechnol. 1983;27:119–178. doi: 10.1007/BFb0009107. [DOI] [PubMed] [Google Scholar]
  11. Ohmiya Y., Angevine L. S., Mehendale H. M. Effect of drug-induced phospholipidosis on pulmonary disposition of pneumophilic drugs. Drug Metab Dispos. 1983 Jan-Feb;11(1):25–30. [PubMed] [Google Scholar]
  12. Porter P., Singleton A. G. The degradation of lignin and quantitative aspects of ruminant digestion. Br J Nutr. 1971 Jan;25(1):3–14. doi: 10.1079/bjn19710061. [DOI] [PubMed] [Google Scholar]
  13. Taylor B. F., Campbell W. L., Chinoy I. Anaerobic degradation of the benzene nucleus by a facultatively anaerobic microorganism. J Bacteriol. 1970 May;102(2):430–437. doi: 10.1128/jb.102.2.430-437.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES