Abstract
One hundred Asian schoolchildren provided evidence of the relationships between radiological and biochemical evidence of rickets in a vitamin D-deficient population. In a retrospective study of the X-rays of 56 children the variables serum alkaline phosphatase, inorganic phosphorus and age provided a discriminant function which correctly classified 10 of 11 children with radiological evidence of rickets and 44 of 45 children with negative or marginally abnormal X-rays. When the discriminant function was applied to a prospective study of 44 children, three children with radiological evidence of rickets were correctly classified together with 38 of the remaining 41 children with negative or marginally abnormal X-rays. Serum alkaline phosphatase was the most important variable in the discriminant analysis, followed by serum inorganic phosphorus and age. Low levels of serum 25-hydroxy vitamin D (25-OHD) are of little value in predicting the severity of radiological evidence of rachitic bone disease in a vitamin D-deficient population.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belsey R. E., DeLuca H. F., Potts J. T., Jr A rapid assay for 25-OH-vitamin D3 without preparative chromatography. J Clin Endocrinol Metab. 1974 Jun;38(6):1046–1051. doi: 10.1210/jcem-38-6-1046. [DOI] [PubMed] [Google Scholar]
- Dunnigan M. G., McIntosh W. B., Sutherland G. R., Gardee R., Glekin B., Ford J. A., Robertson I. Policy for prevention of Asian rickets in Britain: a preliminary assessment of the Glasgow rickets campaign. Br Med J (Clin Res Ed) 1981 Jan 31;282(6261):357–360. doi: 10.1136/bmj.282.6261.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gómez P., Coca C., Vargas C., Acebillo J., Martinez A. Normal reference-intervals for 20 biochemical variables in healthy infants, children, and adolescents. Clin Chem. 1984 Mar;30(3):407–412. [PubMed] [Google Scholar]
- Kennedy A. C., Allam B. F., Boyle I. T., Nuki G., Rooney P. J., Buchanan W. W. Abnormalities in mineral metabolism suggestive of parathyroid over-activity in rheumatoid arthritis. Curr Med Res Opin. 1975;3(6):345–358. doi: 10.1185/03007997509114786. [DOI] [PubMed] [Google Scholar]
- Naik R. B., Gosling P., Price C. P. Comparative study of alkaline phosphatase isoenzymes, bone histology, and skeletal radiography in dialysis bone disease. Br Med J. 1977 May 21;1(6072):1307–1310. doi: 10.1136/bmj.1.6072.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peach H., Compston J. E., Vedi S., Horton L. W. Value of plasma calcium, phosphate, and alkaline phosphatase measurements in the diagnosis of histological osteomalacia. J Clin Pathol. 1982 Jun;35(6):625–630. doi: 10.1136/jcp.35.6.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richards I. D., Hamilton F. M., Taylor E. C., Sweet E. M., Bremner E., Price H. A search for sub-clinical rickets in Glasgow children. Scott Med J. 1968 Sep;13(9):297–305. doi: 10.1177/003693306801300904. [DOI] [PubMed] [Google Scholar]
- Round J. M. Plasma calcium, magnesium, phosphorus, and alkaline phosphatase levels in normal British schoolchildren. Br Med J. 1973 Jul 21;3(5872):137–140. doi: 10.1136/bmj.3.5872.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schiele F., Henny J., Hitz J., Petitclerc C., Gueguen R., Siest G. Total bone and liver alkaline phosphatases in plasma: biological variations and reference limits. Clin Chem. 1983 Apr;29(4):634–641. [PubMed] [Google Scholar]