Abstract
Metabolism and growth yields of Bacteroides ruminicola grown on d-xylose, l-arabinose, and l-rhamnose were studied. Growth yields were 62, 68, and 35.5 g (dry weight) per mol of carbohydrate fermented after correction for storage polysaccharide. Experiments with [1-14C]arabinose indicated that pentose was fermented by a pentose phosphate cycle plus glycolysis, with some indication of a minor phosphoketolase-type pathway. The product ratios from pentose were similar to those previously described for hexose. Rhamnose was fermented mainly to 1,2-propanediol, succinate, and acetate, although the latter was quantitatively less than expected. Estimates of adenosine 5′-triphosphate (ATP) molar growth yields could not be calculated with any certainty, as ATP generation by electron transport-linked phosphorylation cannot yet be assessed. If ATP were generated by substrate-level phosphorylation reactions alone, ATP molar growth yields for xylose, arabinose, and rhamnose would be 30, 28, and 35 g/mol. If calculations are based on an assumption that two ATP are generated by electron transport-linked phosphorylation per succinate, ATP molar growth yields become 15, 14, and 22 g/mol; if the assumption is also made that the pathway of lactaldehyde reduction is coupled to production of one ATP per 1,2-propanediol by electron transport-linked phosphorylation, the ATP molar growth yield for rhamnose fermentation becomes 14 g/mol. No preference can be expressed between these alternatives at present.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAILEY R. W. The reaction of pentoses with anthrone. Biochem J. 1958 Apr;68(4):669–672. doi: 10.1042/bj0680669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BAUCHOP T., ELSDEN S. R. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. doi: 10.1099/00221287-23-3-457. [DOI] [PubMed] [Google Scholar]
- BRYANT M. P., SMALL N., BOUMA C., CHU H. Bacteroides ruminicola n. sp. and Succinimonas amylolytica; the new genus and species; species of succinic acid-producing anaerobic bacteria of the bovine rumen. J Bacteriol. 1958 Jul;76(1):15–23. doi: 10.1128/jb.76.1.15-23.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buchanan B. B., Pine L. Path of glucose breakdown and cell yields of a facultative anaerobe, Actinomyces naeslundii. J Gen Microbiol. 1967 Feb;46(2):225–236. doi: 10.1099/00221287-46-2-225. [DOI] [PubMed] [Google Scholar]
- Czerkawski J. W., Breckenridge G. Fermentation of various glycolytic intermediates and other compounds by rumen micro-organisms, with particular reference to methane production. Br J Nutr. 1972 Jan;27(1):131–146. doi: 10.1079/bjn19720077. [DOI] [PubMed] [Google Scholar]
- Dehority B. A. Characterization of several bovine rumen bacteria isolated with a xylan medium. J Bacteriol. 1966 May;91(5):1724–1729. doi: 10.1128/jb.91.5.1724-1729.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dehority B. A., Grubb J. A. Basal medium for the selective enumeration of rumen bacteria utilizing specific energy sources. Appl Environ Microbiol. 1976 Nov;32(5):703–710. doi: 10.1128/aem.32.5.703-710.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FETERIS W. A. A SERUM GLUCOSE METHOD WITHOUT PROTEIN PRECIPITATION. Am J Med Technol. 1965 Jan-Feb;31:17–21. [PubMed] [Google Scholar]
- HUGGINS C. G., MILLER O. N. A microcolorimetric method for the determination of 1, 2-propanediol phosphate. J Biol Chem. 1956 Jul;221(1):377–383. [PubMed] [Google Scholar]
- Henning P. A., van der Walt A. E. Inclusion of xylan in a medium for the enumeration of total culturable rumen bacteria. Appl Environ Microbiol. 1978 Jun;35(6):1008–1011. doi: 10.1128/aem.35.6.1008-1011.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howlett M. R., Mountfort D. O., Turner K. W., Roberton A. M. Metabolism and growth yields in Bacteroides ruminicola strain b14. Appl Environ Microbiol. 1976 Aug;32(2):274–283. doi: 10.1128/aem.32.2.274-283.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kröger A. Electron-transport phosphorylation coupled to fumarate reduction in anaerobically grown Proteus rettgeri. Biochim Biophys Acta. 1974 May 22;347(2):273–289. doi: 10.1016/0005-2728(74)90051-6. [DOI] [PubMed] [Google Scholar]
- Macy J., Probst I., Gottschalk G. Evidence for cytochrome involvement in fumarate reduction and adenosine 5'-triphosphate synthesis by Bacteroides fragilis grown in the presence of hemin. J Bacteriol. 1975 Aug;123(2):436–442. doi: 10.1128/jb.123.2.436-442.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller T. L. The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes. Arch Microbiol. 1978 May 30;117(2):145–152. doi: 10.1007/BF00402302. [DOI] [PubMed] [Google Scholar]
- Mountfort D. O., Roberton A. M. Origins of fermentation products formed during growth of Bacteroides ruminicola on glucose. J Gen Microbiol. 1978 Jun;106(2):353–360. doi: 10.1099/00221287-106-2-353. [DOI] [PubMed] [Google Scholar]
- Pirt S. J. The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):224–231. doi: 10.1098/rspb.1965.0069. [DOI] [PubMed] [Google Scholar]
- SAWADA H., TAKAGI Y. THE METABOLISM OF L-RHAMNOSE IN ESCHERICHIA COLI. 3. L-RHAMULOSE-PHOSPHATE ALDOLASE. Biochim Biophys Acta. 1964 Oct 23;92:26–32. doi: 10.1016/0926-6569(64)90265-2. [DOI] [PubMed] [Google Scholar]
- Stouthamer A. H. A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie Van Leeuwenhoek. 1973;39(3):545–565. doi: 10.1007/BF02578899. [DOI] [PubMed] [Google Scholar]
- Wallnöfer P., Baldwin R. L., Stagno E. Conversion of C-labeled substrates to volatile Fatty acids by the rumen microbiota. Appl Microbiol. 1966 Nov;14(6):1004–1010. doi: 10.1128/am.14.6.1004-1010.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Vries W., van Wyck-Kapteyn W. M., Stouthamer A. H. Generation of ATP during cytochrome-linked anaerobic electron transport in propionic acid bacteria. J Gen Microbiol. 1973 May;76(1):31–41. doi: 10.1099/00221287-76-1-31. [DOI] [PubMed] [Google Scholar]