Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 Mar;97(3):1397–1402. doi: 10.1128/jb.97.3.1397-1402.1969

Suppressor System in Bacillus subtilis 168

C P Georgopoulos 1
PMCID: PMC249860  PMID: 4975748

Abstract

Multiple auxotrophic strains of Bacillus subtilis 168 were tested for joint one-step reversion of two or more auxotrophic markers to the wild-type phenotype. Mu8u5u5, a strain requiring leucine, methionine, and threonine, yielded revertants that grew without added methionine or threonine and proved to have a suppressor gene. When transferred by transformation with deoxyribonucleic acid, this suppressor gene also suppressed the adenine mutation in another strain, Mu8u5u6. The one-step double revertants fell into two distinct classes: strains of class su+I grow well in broth; strains of class su+II grow poorly. Strains su+II tend to revert frequently to the su+I or su state. Conditional lethal mutants of phage φe were isolated which can grow on the su+ and not on the su strains.

Full text

PDF
1399

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENZER S., CHAMPE S. P. A change from nonsense to sense in the genetic code. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1114–1121. doi: 10.1073/pnas.48.7.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRODY S., YANOFSKY C. Suppressor gene alteration of protein primary structure. Proc Natl Acad Sci U S A. 1963 Jul;50:9–16. doi: 10.1073/pnas.50.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cahn F. H., Fox M. S. Fractionation of transformable bacteria from ocompetent cultures of Bacillus subtilis on renografin gradients. J Bacteriol. 1968 Mar;95(3):867–875. doi: 10.1128/jb.95.3.867-875.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Capecchi M. R., Gussin G. N. Suppression in vitro: Identification of a Serine-sRNA as a "Nonsense" Suppressor. Science. 1965 Jul 23;149(3682):417–422. doi: 10.1126/science.149.3682.417. [DOI] [PubMed] [Google Scholar]
  5. Carbon J., Berg P., Yanofsky C. Missense suppression due to a genetically altered tRNA. Cold Spring Harb Symp Quant Biol. 1966;31:487–497. doi: 10.1101/sqb.1966.031.01.063. [DOI] [PubMed] [Google Scholar]
  6. Engelhardt D. L., Webster R. E., Wilhelm R. C., Zinder N. In vitro studies on the mechanism of suppression of a nonsense mutation. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1791–1797. doi: 10.1073/pnas.54.6.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gorini L., Beckwith J. R. Suppression. Annu Rev Microbiol. 1966;20:401–422. doi: 10.1146/annurev.mi.20.100166.002153. [DOI] [PubMed] [Google Scholar]
  8. Gupta N. K., RajBhandary U. L., Khorana H. G. Missense suppression in tryptophan synthetase. Cold Spring Harb Symp Quant Biol. 1966;31:499–500. doi: 10.1101/sqb.1966.031.01.064. [DOI] [PubMed] [Google Scholar]
  9. HAWTHORNE D. C., MORTIMER R. K. Super-suppressors in yeast. Genetics. 1963 Apr;48:617–620. doi: 10.1093/genetics/48.4.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hall D. H. Mutants of bacteriophage T4 unable to induce dihydrofolate reductase activity. Proc Natl Acad Sci U S A. 1967 Aug;58(2):584–591. doi: 10.1073/pnas.58.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hall D. H., Tessman I. T4 mutants unable to induce deoxycytidylate deaminase activity. Virology. 1966 Jun;29(2):339–345. doi: 10.1016/0042-6822(66)90041-9. [DOI] [PubMed] [Google Scholar]
  12. Nester E W, Schafer M, Lederberg J. Gene Linkage in DNA Transfer: A Cluster of Genes Concerned with Aromatic Biosynthesis in Bacillus Subtilis. Genetics. 1963 Apr;48(4):529–551. doi: 10.1093/genetics/48.4.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Okubo S., Yanagida T. Isolation of a suppressor mutant in Bacillus subtilis. J Bacteriol. 1968 Mar;95(3):1187–1188. doi: 10.1128/jb.95.3.1187-1188.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reid P., Berg P. T4 bacteriophage mutants suppressible by a missense suppressor which inserts glycine in place of arginine for the codon AGA. J Virol. 1968 Sep;2(9):905–914. doi: 10.1128/jvi.2.9.905-914.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Revel H. R. Restriction of nonglucosylated T-even bacteriophage: properties of permissive mutants of Escherichia coli B and K12. Virology. 1967 Apr;31(4):688–701. doi: 10.1016/0042-6822(67)90197-3. [DOI] [PubMed] [Google Scholar]
  16. Roscoe D. H., Tucker R. G. The biosynthesis of 5-hydroxymethyldeoxyuridylic acid in bacteriophage-infected Bacillus subtilis. Virology. 1966 May;29(1):157–166. doi: 10.1016/0042-6822(66)90205-4. [DOI] [PubMed] [Google Scholar]
  17. YANOFSKY C., HELINSKI D. R., MALING B. D. The effects of mutation on the composition and properties of the A protein of Escherichia coli tryptohan synthetase. Cold Spring Harb Symp Quant Biol. 1961;26:11–24. doi: 10.1101/sqb.1961.026.01.006. [DOI] [PubMed] [Google Scholar]
  18. YOSHIKAWA H., SUEOKA N. Sequential replication of Bacillus subtilis chromosome. I. Comparison of marker frequencies in exponential and stationary growth phases. Proc Natl Acad Sci U S A. 1963 Apr;49:559–566. doi: 10.1073/pnas.49.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES