Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1991 Feb;59(2):716–717. doi: 10.1128/iai.59.2.716-717.1991

Lipopolysaccharide from Klebsiella pneumoniae inhibits Na+ absorption in canine tracheal epithelium.

J Tamaoki 1, N Sakai 1, K Isono 1, T Kanemura 1, K Takeyama 1, T Takizawa 1
PMCID: PMC257818  PMID: 1987086

Abstract

The effect of lipopolysaccharide (LPS) from Klebsiella pneumoniae on the bioelectric properties of canine cultured tracheal epithelium was examined. LPS decreased short-circuit current (Isc), and its effects on Isc were reduced when Isc was inhibited by amiloride and indomethacin. We speculate that LPS may selectively inhibit Na+ absorption through the inhibition of prostaglandin synthesis by airway epithelium.

Full text

PDF
716

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Bazzaz F. J., Cheng E. Effect of catecholamines on ion transport in dog tracheal epithelium. J Appl Physiol Respir Environ Exerc Physiol. 1979 Aug;47(2):397–403. doi: 10.1152/jappl.1979.47.2.397. [DOI] [PubMed] [Google Scholar]
  2. Al-Bazzaz F., Yadava V. P., Westenfelder C. Modification of Na and Cl transport in canine tracheal mucosa by prostaglandins. Am J Physiol. 1981 Feb;240(2):F101–F105. doi: 10.1152/ajprenal.1981.240.2.F101. [DOI] [PubMed] [Google Scholar]
  3. Brigham K. L., Bowers R., Haynes J. Increased sheep lung vascular permeability caused by Escherichia coli endotoxin. Circ Res. 1979 Aug;45(2):292–297. doi: 10.1161/01.res.45.2.292. [DOI] [PubMed] [Google Scholar]
  4. Cullen J. J., Welsh M. J. Regulation of sodium absorption by canine tracheal epithelium. J Clin Invest. 1987 Jan;79(1):73–79. doi: 10.1172/JCI112811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Folkerts G., Engels F., Nijkamp F. P. Endotoxin-induced hyperreactivity of the guinea-pig isolated trachea coincides with decreased prostaglandin E2 production by the epithelial layer. Br J Pharmacol. 1989 Feb;96(2):388–394. doi: 10.1111/j.1476-5381.1989.tb11829.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Olver R. E., Davis B., Marin M. G., Nadel J. A. Active transport of Na+ and Cl- across the canine tracheal epithelium in vitro. Am Rev Respir Dis. 1975 Dec;112(6):811–815. doi: 10.1164/arrd.1975.112.6.811. [DOI] [PubMed] [Google Scholar]
  7. Smith P. L., Welsh M. J., Stoff J. S., Frizzell R. A. Chloride secretion by canine tracheal epithelium: I. Role of intracellular c AMP levels. J Membr Biol. 1982;70(3):217–226. doi: 10.1007/BF01870564. [DOI] [PubMed] [Google Scholar]
  8. Snella M. C., Rylander R. Lung cell reactions after inhalation of bacterial lipopolysaccharides. Eur J Respir Dis. 1982 Nov;63(6):550–557. [PubMed] [Google Scholar]
  9. Tamaoki J., Kobayashi K., Sakai N., Chiyotani A., Kanemura T., Takizawa T. Effect of bradykinin on airway ciliary motility and its modulation by neutral endopeptidase. Am Rev Respir Dis. 1989 Aug;140(2):430–435. doi: 10.1164/ajrccm/140.2.430. [DOI] [PubMed] [Google Scholar]
  10. Welsh M. J., Widdicombe J. H., Nadel J. A. Fluid transport across the canine tracheal epithelium. J Appl Physiol Respir Environ Exerc Physiol. 1980 Nov;49(5):905–909. doi: 10.1152/jappl.1980.49.5.905. [DOI] [PubMed] [Google Scholar]
  11. Yankaskas J. R., Cotton C. U., Knowles M. R., Gatzy J. T., Boucher R. C. Culture of human nasal epithelial cells on collagen matrix supports. A comparison of bioelectric properties of normal and cystic fibrosis epithelia. Am Rev Respir Dis. 1985 Dec;132(6):1281–1287. doi: 10.1164/arrd.1985.132.6.1281. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES