Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2006 Nov 11;32(3-4):273–288. doi: 10.1007/s10867-006-9016-x

Approaches to Biosimulation of Cellular Processes

F J Bruggeman 1,2,, H V Westerhoff 1,2
PMCID: PMC2651526  PMID: 19669467

Abstract

Modelling and simulation are at the heart of the rapidly developing field of systems biology. This paper reviews various types of models, simulation methods, and theoretical approaches that are presently being used in the quantitative description of cellular processes. We first describe how molecular interaction networks can be represented by means of stoichiometric, topological and kinetic models. We briefly discuss the formulation of kinetic models using mesoscopic (stochastic) or macroscopic (continuous) approaches, and we go on to describe how detailed models of molecular interaction networks (silicon cells) can be constructed on the basis of experimentally determined kinetic parameters for cellular processes. We show how theory can help in analyzing models by applying control analysis to a recently published silicon cell model. Finally, we review some of the theoretical approaches available to analyse kinetic models and experimental data, respectively.

Key words: systems biology, biosimulations, networks, mathematical models, kinetic models

Contributor Information

F. J. Bruggeman, Email: frank.bruggeman@falw.vu.nl

H. V. Westerhoff, Email: hans.westerhoff@falw.vu.nl

References

  • 1.Brazhe, N.A., Brazhe, A.R., et al.: Unraveling cell processes: interference imaging weaved with data analysis. In press (2006) [DOI] [PMC free article] [PubMed]
  • 2.Diderichsen, P., Göpel, S.O.: Modeling the electrical activity of pancreatic α-cells based on experimental data from intact mouse islets. In press (2006) [DOI] [PMC free article] [PubMed]
  • 3.Mogilevskaya, E., Demin, O., et al.: Kinetic model of mitochondrial Krebs cycle: unravelling the mechanism of salicylate hepatotoxic effects. In press (2006) [DOI] [PMC free article] [PubMed]
  • 4.Rapin, N., Kesmir, C., et al.: Integrating bioinformatics and systems biology for immune system modeling. In press (2006) [DOI] [PMC free article] [PubMed]
  • 5.Reder, C.: Metabolic control theory: a structural approach. J. Theor. Biol. 135(2), 175–201 (1988) [DOI] [PubMed]
  • 6.Papin, J.A., Stelling, J., et al.: Comparison of network-based pathway analysis methods. Trends Biotechnol. 22(8), 400–405 (2004) [DOI] [PubMed]
  • 7.Price, N.D., Reed, J.L., et al.: Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2(11), 886–897 (2004) [DOI] [PubMed]
  • 8.Jeong, H., Tombor, B., et al.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000) [DOI] [PubMed]
  • 9.Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proc. R. Soc. Lond. B Biol. Sci. 268(1478), 1803–1810 (2001) [DOI] [PMC free article] [PubMed]
  • 10.Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002) [DOI]
  • 11.Milo, R., Shen-Orr, S., et al.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002) [DOI] [PubMed]
  • 12.Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003) [DOI]
  • 13.Hornberg, J., Binder, B., Bruggeman, F.J., Schoeberl, B., Heinrich, R., Westerhoff, H.V.: Who is in control of MAPK signaling? Manuscript in preparation (2004) [DOI] [PubMed]
  • 14.Kholodenko, B.N., Demin, O.V., et al.: Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274(42), 30169–30181 (1999) [DOI] [PubMed]
  • 15.Schuster, S., Schuster, R.: Decomposition of biochemical reaction systems according to flux control insusceptibility. J. Chim. Phys. 89(9), 1887–1910 (1992)
  • 16.Stucki, J.W.: Stability analysis of biochemical systems—practical guide. Prog. Biophys. Mol. Biol. 33(2), 99–187 (1978) [DOI] [PubMed]
  • 17.Heinrich, R., Schuster, S.: The Regulation of Cellular Systems. Chapman & Hall, New York (1996)
  • 18.Hofmeyr, J.H., Cornish-Bowden, A.: The reversible Hill equation: how to incorporate cooperative enzymes into metabolic models. Comput. Appl. Biosci. 13(4), 377–385 (1997) [DOI] [PubMed]
  • 19.Cleland, W.W.: An analysis of Haldane relationships. Methods Enzymol. 87, 366–369 (1982) [DOI] [PubMed]
  • 20.Even, S., Lindley, N.D., et al.: Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures. Microbiology 149(Pt 7), 1935–1944 (2003) [DOI] [PubMed]
  • 21.ter Kuile, B.H., Westerhoff, H.V.: Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett. 500(3), 169–171 (2001) [DOI] [PubMed]
  • 22.Rossell, S., van der Weijden, C.C., et al.: Hierarchical and metabolic regulation of glucose influx in starved Saccharomyces cerevisiae. FEMS Yeast Research 5(6–7), 611–619 (2005) [DOI] [PubMed]
  • 23.Rossell, S., van der Weijden, C.C., et al.: Unraveling the complexity of flux regulation: a new method demonstrated for nutrient starvation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 103(7), 2166–2171 (2006) [DOI] [PMC free article] [PubMed]
  • 24.Cornish-Bowden, A.: Fundamentals of Enzyme Kinetics. Portland, London (1995)
  • 25.Segel, I.H.: Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems. Wiley (1993)
  • 26.Cleland, W.W.: The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. Biophys. Acta 67, 104–137 (1963) [DOI] [PubMed]
  • 27.Cleland, W.W.: The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: nomenclature and theory. Biochim. Biophys. Acta 67, 173–187 (1963) [DOI] [PubMed]
  • 28.Cleland, W.W.: The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection. Biochim. Biophys. Acta 67, 188–196 (1963) [DOI] [PubMed]
  • 29.Koshland, D.E., Jr., Nemethy, G., et al.: Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5(1), 365–385 (1966) [DOI] [PubMed]
  • 30.Monod, J., Wyman, J., et al.: On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965) [DOI] [PubMed]
  • 31.Popova, S.V., Sel’kov, E.E.: Generalization of the model by Monod, Wyman and Changeux for the case of a reversible monosubtrate reaction SR,TP. FEBS Lett. 53(3), 269–273 (1975) [DOI] [PubMed]
  • 32.van Dam, K., van der Vlag, J., et al.: The sum of the control coefficients of all enzymes on the flux through a group-transfer pathway can be as high as two. Eur. J. Biochem. 212(3), 791–799 (1993) [DOI] [PubMed]
  • 33.Keizer, J.: Statistical Thermodynamics of Nonequilibrium Processes. Springer, Berlin (1987)
  • 34.Rao, C.V., Wolf, D.M., et al.: Control, exploitation and tolerance of intracellular noise. Nature 420(6912), 231–237 (2002) [DOI] [PubMed]
  • 35.Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976) [DOI]
  • 36.McQuarrie, D.A.: Stochastic approach to chemical kinetics. J. Appl. Probab. 4, 413–478 (1967) [DOI]
  • 37.Van Kampen, N.G.: Stochastic Processes in Chemistry and Physics. North-Holland, Amsterdam (1992)
  • 38.Baras, F., Mansour, M.M.: Reaction–diffusion master equation: a comparison with microscopic simulations. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(6), 6139–6148 (1996) [DOI] [PubMed]
  • 39.Hattne, J., Fange, D., et al.: Stochastic reaction–diffusion simulation with MesoRD. Bioinformatics 21(12), 2923–2924 (2005) [DOI] [PubMed]
  • 40.Arkin, A., Ross, J., et al.: Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149(4), 1633–1648 (1998) [DOI] [PMC free article] [PubMed]
  • 41.Elf, J., Ehrenberg, M.: Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome Res. 13(11), 2475–2484 (2003) [DOI] [PMC free article] [PubMed]
  • 42.Cao, Y., Gillespie, D.T., et al.: Accelerated stochastic simulation of the stiff enzyme-substrate reaction. J. Chem. Phys. 123, 144917 (2005) [DOI] [PubMed]
  • 43.Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys. 118(11), 4999–5010 (2003) [DOI]
  • 44.Olivier, B.G., Snoep, J.L.: Web-based kinetic modelling using JWS online. Bioinformatics 20(13), 2143–2144 (2004) [DOI] [PubMed]
  • 45.Chance, B., Garfinkel, D., et al.: Metabolic control mechanisms. 5. A solution for the equations representing interaction between glycolysis and respiration in ascites tumor cells. J. Biol. Chem. 235, 2426–2439 (1960) [PubMed]
  • 46.Garfinkel, D., Hess, B.: Metabolic control mechanisms. vii. A detailed computer model of the glycolytic pathway in ascites cells. J. Biol. Chem. 239, 971–983 (1964) [PubMed]
  • 47.Rapoport, T.A., Heinrich, R., et al.: Linear steady-state treatment of enzymatic chains—mathematical-model of glycolysis of human erythrocytes. Eur. J. Biochem. 42(1), 107–120 (1974) [DOI] [PubMed]
  • 48.Teusink, B., Walsh, M.C., et al.: The danger of metabolic pathways with turbo design. Trends Biochem. Sci. 23(5), 162–169 (1998) [DOI] [PubMed]
  • 49.Bakker, B.M., Mensonides, F.I., et al.: Compartmentation protects trypanosomes from the dangerous design of glycolysis. Proc. Natl. Acad. Sci. USA 97(5), 2087–2092 (2000) [DOI] [PMC free article] [PubMed]
  • 50.Hoefnagel, M.H., Starrenburg, M.J., et al.: Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148(Pt 4), 1003–1013 (2002) [DOI] [PubMed]
  • 51.Michels, P.A.M., Bakker, B.M., Opperdoes, F.R., Westerhoff, H.V.: On the mathematical modelling of metabolic pathways and its use in the identification of the most suitable drug target. In: Vial, H., Fairlamb, A., Ridley, R. (eds.) Tropical Disease Guidelines and Issues: Discoveries and Drug Development. WHO, Geneva (in press)
  • 52.Bakker, B.M., Michels, P.A.M., et al.: Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J. Biol. Chem. 272(6), 3207–3215 (1997) [DOI] [PubMed]
  • 53.Bruggeman, F.J., Boogerd, F.C., et al.: The multifarious short-term regulation of ammonium assimilation of Escherichia coli: dissection using an in silico replica. FEBS J. 272(8), 1965–1985 (2005) [DOI] [PubMed]
  • 54.Rohwer, J.M., Meadow, N.D., et al.: Understanding glucose transport by the bacterial phosphoenolpyruvate:glycose phosphotransferase system on the basis of kinetic measurements in vitro. J. Biol. Chem. 275(45), 34909–34921 (2000) [DOI] [PubMed]
  • 55.Teusink, B., Passarge, J., et al.: Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 267(17), 5313–5329 (2000) [DOI] [PubMed]
  • 56.Snoep, J.L., Bruggeman, F., et al.: Towards building the silicon cell: a modular approach. Biosystems 83(2–3), 207–216 (2006) [DOI] [PubMed]
  • 57.Goldbeter, A., Lefever, R.: Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys. J. 12(10), 1302–1315 (1972) [DOI] [PMC free article] [PubMed]
  • 58.Selkov, E.: Stabilization of energy charge, generation of oscillations and multiple steady states in energy metabolism as a result of purely stoichiometric regulation. Eur. J. Biochem. 59(1), 151–157 (1975) [DOI] [PubMed]
  • 59.Kremling, A., Fischer, S., et al.: A benchmark for methods in reverse engineering and model discrimination: problem formulation and solutions. Genome Res. 14(9), 1773–1785 (2004) [DOI] [PMC free article] [PubMed]
  • 60.Mendes, P., Kell, D.: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14(10), 869–883 (1998) [DOI] [PubMed]
  • 61.Moles, C.G., Mendes, P., et al.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13(11), 2467–2474 (2003) [DOI] [PMC free article] [PubMed]
  • 62.Rhee, S.G., Chock, P.B., et al.: Regulation of Escherichia coli glutamine synthetase. Adv. Enzymol. Relat. Areas Mol. Biol. 62, 37–92 (1989) [DOI] [PubMed]
  • 63.Jiang, P., Peliska, J.A., et al.: Reconstitution of the signal-transduction bicyclic cascade responsible for the regulation of Ntr gene transcription in Escherichia coli. Biochemistry 37(37), 12795–12801 (1998) [DOI] [PubMed]
  • 64.Jiang, P., Peliska, J.A., et al.: The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state. Biochemistry 37(37), 12802–12810 (1998) [DOI] [PubMed]
  • 65.Kustu, S., Hirschman, J., et al.: Covalent modification of bacterial glutamine synthetase: physiological significance. Mol. Gen. Genet. 197(2), 309–317 (1984) [DOI] [PubMed]
  • 66.Rhee, S.G., Park, R., et al.: Allosteric regulation of monocyclic interconvertible enzyme cascade systems: use of Escherichia coli glutamine synthetase as an experimental model. Proc. Natl. Acad. Sci. USA 75(7), 3138–3142 (1978) [DOI] [PMC free article] [PubMed]
  • 67.van Heeswijk, W.C., Wen, D., et al.: The Escherichia coli signal transducers PII (GlnB) and GlnK form heterotrimers in vivo: fine tuning the nitrogen signal cascade. Proc. Natl. Acad. Sci. USA 97(8), 3942–3947 (2000) [DOI] [PMC free article] [PubMed]
  • 68.Javelle, A., Severi, E., et al.: Ammonium sensing in Escherichia coli. Role of the ammonium transporter AmtB and AmtB–GlnK complex formation. J. Biol. Chem. 279(10), 8530–8538 (2004) [DOI] [PubMed]
  • 69.Denton, M.D., Ginsburg, A.: Some characteristics of the binding of substrates of glutamine synthetase from Escherichia coli. Biochemistry 9(3), 617–632 (1970) [DOI] [PubMed]
  • 70.Ginsburg, A., Yeh, J., et al.: Some effects of adenylylation on the biosynthetic properties of the glutamine synthetase from Escherichia coli. Biochemistry 9(3), 633–649 (1970) [DOI] [PubMed]
  • 71.Ninfa, A.J., Jiang, P., et al.: Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli. Curr. Top. Cell. Regul. 36, 31–75 (2000) [DOI] [PubMed]
  • 72.Rhee, S.G., Chock, P.B., et al.: Glutamine synthetase from Escherichia coli. Methods Enzymol. 113, 213–241 (1985) [DOI] [PubMed]
  • 73.Helling, R.B.: Why does Escherichia coli have two primary pathways for synthesis of glutamate? J. Bacteriol. 176(15), 4664–4668 (1994) [DOI] [PMC free article] [PubMed]
  • 74.Helling, R.B.: Pathway choice in glutamate synthesis in Escherichia coli. J. Bacteriol. 180(17), 4571–4575 (1998) [DOI] [PMC free article] [PubMed]
  • 75.Helling, R.B.: Speed versus efficiency in microbial growth and the role of parallel pathways. J. Bacteriol. 184(4), 1041–1045 (2002) [DOI] [PMC free article] [PubMed]
  • 76.Kustu, S., Hirschman, J., et al.: Adenylylation of bacterial glutamine synthetase: physiological significance. Curr. Top. Cell. Regul. 27, 201–213 (1985) [DOI] [PubMed]
  • 77.Coutts, G., Thomas, G., et al.: Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J. 21(4), 536–545 (2002) [DOI] [PMC free article] [PubMed]
  • 78.van Heeswijk, W.C., Hoving, S., et al.: An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli. Mol. Microbiol. 21(1), 133–146 (1996) [DOI] [PubMed]
  • 79.Ninfa, A.J., Atkinson, M.R.: PII signal transduction proteins. Trends Microbiol. 8(4), 172–179 (2000) [DOI] [PubMed]
  • 80.Zimmer, D.P., Soupene, E., et al.: Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc. Natl. Acad. Sci. USA 97(26), 14674–14679 (2000) [DOI] [PMC free article] [PubMed]
  • 81.Stadtman, E.R.: The story of glutamine synthetase regulation. J. Biol. Chem. 276(48), 44357–44364 (2001) [DOI] [PubMed]
  • 82.Chassagnole, C., Noisommit-Rizzi, N., et al.: Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol. Bioeng. 79(1), 53–73 (2002) [DOI] [PubMed]
  • 83.Sontag, E.: Adaptation and regulation with signal detection implies internal model. Syst. Control Lett. 50, 119–126 (2003) [DOI]
  • 84.Yi, T.M., Huang, Y., et al.: Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl. Acad. Sci. USA 97(9), 4649–4653 (2000) [DOI] [PMC free article] [PubMed]
  • 85.Heinrich, R., Rapoport, T.A.: A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42(1), 89–95 (1974) [DOI] [PubMed]
  • 86.Kacser, H., Burns, J.A.: The control of flux. Symp. Soc. Exp. Biol. 27, 65–104 (1973) [PubMed]
  • 87.Westerhoff, H.V., Van Dam, K.: Thermodynamics and Control of Biological Free-Energy Transduction. Elsevier (Biomedical Division), Amsterdam (1987)
  • 88.Kahn, D., Westerhoff, H.V.: Control theory of regulatory cascades. J. Theor. Biol. 153(2), 255–285 (1991) [DOI] [PubMed]
  • 89.Fell, D.A.: Understanding the Control of Metabolism. Portland, London (1997)
  • 90.Schuster, S., Kahn, D., et al.: Modular analysis of the control of complex metabolic pathways. Biophys. Chem. 48(1), 1–17 (1993) [DOI] [PubMed]
  • 91.Bruggeman, F.J., Westerhoff, H.V., et al.: Modular response analysis of cellular regulatory networks. J. Theor. Biol. 218(4), 507–520 (2002) [PubMed]
  • 92.Hofmeyr, J.H., Westerhoff, H.V.: Building the cellular puzzle: control in multi-level reaction networks. J. Theor. Biol. 208(3), 261–285 (2001) [DOI] [PubMed]
  • 93.Westerhoff, H.V., Koster, J.G., van Workum, M., Rudd, K.E.: On the control of gene expression. In: Cornish-Bowden, A., Cardenas, M.L. (eds.) Control of Metabolic Processes, pp. 399–413. Plenum, New York (1989)
  • 94.Acerenza, L., Sauro, H.M., et al.: Control analysis of time-dependent metabolic systems. J. Theor. Biol. 137(4), 423–444 (1989) [DOI] [PubMed]
  • 95.Demin, O.V., Westerhoff, H.V., et al.: Control analysis of stationary forced oscillations. J. Phys. Chem. B 103(48), 10695–10710 (1999) [DOI]
  • 96.Hornberg, J.J., Bruggeman, F.J., et al.: Principles behind the multifarious control of signal transduction. ERK phosphorylation and kinase/phosphatase control. FEBS J. 272(1), 244–258 (2005) [DOI] [PubMed]
  • 97.Ingalls, B.P., Sauro, H.M.: Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non-steady state trajectories. J. Theor. Biol. 222(1), 23–36 (2003) [DOI] [PubMed]
  • 98.Kholodenko, B.N., Demin, O.V., et al.: Control analysis of periodic phenomena in biological systems. J. Phys. Chem. B 101(11), 2070–2081 (1997) [DOI]
  • 99.Peletier, M.A., Westerhoff, H.V., et al.: Control of spatially heterogeneous and time-varying cellular reaction networks: a new summation law. J. Theor. Biol. 225(4), 477–487 (2003) [DOI] [PubMed]
  • 100.Savageau, M.A.: Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Addison-Wesley, New York (1976)
  • 101.Voit, E.O.: Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists. Cambridge University Press, Cambridge (2000)
  • 102.Wiggins, S.: Introduction to Applied Nonlinear Dynamics and Chaos. Springer, New York (2003)
  • 103.Hynne, R., Dano, S., et al.: Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys. Chemist. 94(1–2), 121–163 (2001) [DOI] [PubMed]
  • 104.Reijenga, K.A., van Megen, Y.M., et al.: Yeast glycolytic oscillations that are not controlled by a single oscillophore: a new definition of oscillophore strength. J. Theor. Biol. 232(3), 385–398 (2005) [DOI] [PubMed]
  • 105.Mosekilde, E., Landing, B., et al.: Bifurcation structure of a model of bursting pancreatic cells. BioSystems 63, 3–6 (2001) [DOI] [PubMed]
  • 106.Postnov, D.E., Ryazanova, L.S., et al.: Neural synchronization via potassium signaling. Int. J. Neural Syst. 16, 99–109 (2006) [DOI] [PubMed]
  • 107.Alberghina, L., Westerhoff, H.V. (eds.): Systems Biology: Definitions and Perspectives (Topics in Current Genetics). Springer, Berlin (2005)
  • 108.Kriete, A., Eils, R. (eds.): Computational Systems Biology. Elsevier Academic, London, UK (2005)
  • 109.Westerhoff, H.V., Palsson, B.O.: The evolution of molecular biology into systems biology. Nat. Biotechnol. 22(10), 1249–1252 (2004) [DOI] [PubMed]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES