Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1963 Dec;86(6):1202–1210. doi: 10.1128/jb.86.6.1202-1210.1963

DE NOVO SYNTHESIS OF α-AMYLASE BY BACILLUS STEAROTHERMOPHILUS1

N E Welker a,2, L Leon Campbell b,2
PMCID: PMC283630  PMID: 14086090

Abstract

Welker, N. E. (Western Reserve University, Cleveland, Ohio and University of Illinois, Urbana), and L. Leon Campbell. De novo synthesis of α-amylase by Bacillus stearothermophilus. J. Bacteriol. 86:1202–1210. 1963.—The pH optimum for the synthesis of α-amylase by washed-cell suspensions was 6.7. α-Amylase synthesis began soon after the addition of the inducer (maltose, methyl-β-d-maltoside, or phenyl-α-d-glucoside, at 10−3m), proceeded at a linear rate for 60 min, and then leveled off. Cell suspensions without inducer produced small amounts of α-amylase. The addition of glucose (2 × 10−3m), sucrose (10−3m), or glycerol (4 × 10−3m) to washed-cell suspensions failed to stimulate the production of α-amylase. Nitrogen starvation of washed cells for 60 min with fructose as a carbon source or by induction with pure maltose showed that the ability to produce α-amylase was lost. Examination of the amino acid pool at this time showed a general depletion of amino acids and the complete disappearance of tyrosine, phenyl-alanine, proline, and valine. Replenishment of the amino acid pool with casein hydrolysate (0.5%) restored the ability of the cells to produce α-amylase. Chloramphenicol and 8-azaguanine were shown to inhibit α-amylase synthesis. Inhibition was observed immediately upon the addition of chloramphenicol to cell suspensions preinduced for varying periods of time. Actinomycin D and mitomycin C also inhibited α-amylase synthesis when added to induced washed-cell suspensions. The amino acid analogues, norvaline, norleucine, and ethionine, inhibited α-amylase formation by 72, 53, and 38%, respectively. p-Fluorophenylalanine inhibited the synthesis of active α-amylase by 92% and the incorporation of proline-C14 into α-amylase and cellular proteins by 95 and 74%, respectively.

Full text

PDF
1208

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CAMPBELL L. L., MANNING G. B. Thermostable alpha-amylase of Bacillus stearothermophilus. III. Amino acid composition. J Biol Chem. 1961 Nov;236:2962–2965. [PubMed] [Google Scholar]
  2. CHANTRENNE H., DEVREUX S. [Restoration of the synthesis of enzymes after inhibition by azaquanine]. Biochim Biophys Acta. 1960 Jul 1;41:239–245. doi: 10.1016/0006-3002(60)90006-8. [DOI] [PubMed] [Google Scholar]
  3. COHEN G. N., MUNIER R. Effets des analogues structuraux d'aminoacides sur la croissance, la synthèse de protéines et la synthèse d'enzymes chez Escherichia coli. Biochim Biophys Acta. 1959 Feb;31(2):347–356. doi: 10.1016/0006-3002(59)90007-1. [DOI] [PubMed] [Google Scholar]
  4. COHEN G. N., MUNIER R. Incorporation d'analogues structuraux d'aminoacides dans les protéines bactériennes. Biochim Biophys Acta. 1956 Sep;21(3):592–593. doi: 10.1016/0006-3002(56)90207-4. [DOI] [PubMed] [Google Scholar]
  5. COLEMAN G., ELLIOTT W. H. Studies on alpha-amylase formation by Bacillus subtilis. Biochem J. 1962 May;83:256–263. doi: 10.1042/bj0830256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CREASER E. H. The assimilation of amino acids by bacteria. 22. The effect of 8-azaguanine upon enzyme formation in Staphylococcus aureus. Biochem J. 1956 Nov;64(3):539–545. doi: 10.1042/bj0640539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. EISENSTADT J. M., KLEIN H. P. Evidence for the de novo synthesis of the alpha-amylase of Pseudomonas saccharophila. J Bacteriol. 1961 Dec;82:798–807. doi: 10.1128/jb.82.6.798-807.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FUKUMOTO J., YAMAMOTO T., TSURU D. Effects of carbon sources and base analogues of nucleic acid on the formation of bacterial amylase. Nature. 1957 Aug 31;180(4583):438–439. doi: 10.1038/180438b0. [DOI] [PubMed] [Google Scholar]
  9. HALVORSON H. O., SPIEGELMAN S. Net utilization of free amino acids during the induced synthesis of maltozymase in yeast. J Bacteriol. 1953 May;65(5):601–608. doi: 10.1128/jb.65.5.601-608.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KERSTEN H. [On the method of action of mitomycin C. I. Effect of mitomycin C on desoxyribonucleic acid degradation in resting bacteria]. Hoppe Seylers Z Physiol Chem. 1962 Sep 6;329:31–39. doi: 10.1515/bchm2.1962.329.1.31. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. MANDELSTAM J. Turnover of protein in starved bacteria and its relationship to the induced synthesis of enzyme. Nature. 1957 Jun 8;179(4571):1179–1181. doi: 10.1038/1791179a0. [DOI] [PubMed] [Google Scholar]
  13. MUNIER R., COHEN G. N. Incorporation d'analogues structuraux d'aminoacides dans les protéines bactériennes au cours de leur synthèse in vivo. Biochim Biophys Acta. 1959 Feb;31(2):378–391. doi: 10.1016/0006-3002(59)90011-3. [DOI] [PubMed] [Google Scholar]
  14. NEIDHARDT F. C., MAGASANIK B. Studies on the role of ribonucleic acid in the growth of bacteria. Biochim Biophys Acta. 1960 Jul 29;42:99–116. doi: 10.1016/0006-3002(60)90757-5. [DOI] [PubMed] [Google Scholar]
  15. OISHI M., TAKAHASHI H., MARUO B. The synthesis of alpha-amylase by a cell-free system from Bacillus subtilis. Biochem Biophys Res Commun. 1962 Aug 7;8:342–347. doi: 10.1016/0006-291x(62)90004-9. [DOI] [PubMed] [Google Scholar]
  16. RICHMOND M. H. The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bacteriol Rev. 1962 Dec;26:398–420. doi: 10.1128/br.26.4.398-420.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. THAYER P. S. The amylases of pseudomonas saccharophila. J Bacteriol. 1953 Dec;66(6):656–663. doi: 10.1128/jb.66.6.656-663.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WELKER N. E., CAMPBELL L. L. EFFECT OF CARBON SOURCES ON FORMATION OF ALPHA-AMYLASE BY BACILLUS STEAROTHERMOPHILUS. J Bacteriol. 1963 Oct;86:681–686. doi: 10.1128/jb.86.4.681-686.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. WELKER N. E., CAMPBELL L. L. INDUCED BIOSYNTHESIS OF ALPHA-AMYLASE BY GROWING CULTURES OF BACILLUS STEAROTHERMOPHILUS. J Bacteriol. 1963 Dec;86:1196–1201. doi: 10.1128/jb.86.6.1196-1201.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. WELKER N. E., CAMPBELL L. L. INDUCTION OF ALPHA-AMYLASE OF BACILLUS STEAROTHERMOPHILUS BY MALTODEXTRINS. J Bacteriol. 1963 Oct;86:687–691. doi: 10.1128/jb.86.4.687-691.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. YOSHIDA A. Studies on the mechanism of protein synthesis; incorporation of p-fluorophenylalanine into alpha-amylase of Bacillus subtilis. Biochim Biophys Acta. 1960 Jun 17;41:98–103. doi: 10.1016/0006-3002(60)90373-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES