Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Apr;102(1):85–96. doi: 10.1128/jb.102.1.85-96.1970

d-Glucaric Acid and Galactaric Acid Catabolism by Agrobacterium tumefaciens

Yung Feng Chang a,1, David Sidney Feingold a
PMCID: PMC284973  PMID: 4314480

Abstract

Cell-free extract (crude extract) of Agrobacterium tumefaciens grown on d-glucuronate or d-glucarate converts d-glucarate and galactarate to a mixture of 2-keto-3-deoxy- and 4-deoxy-5-keto-d-glucarate. These compounds are then converted by partially purified crude extract to an intermediate tentatively identified as 2,5-diketoadipate. The same enzyme preparation further decarboxylates this intermediate to α-ketoglutarate semialdehyde, which is subsequently oxidized in a nicotinamide adenine dinucleotide-dependent reaction to α-ketoglutaric acid. Since A. tumefaciens converts d-glucuronic acid to d-glucarate, a pathway from d-glucuronate to α-ketoglutarate in A. tumefaciens was determined.

Full text

PDF
96

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASHWELL A., WAHBA A. J., HICKMAN J. A new pathway of uronic acid metabolism. Biochim Biophys Acta. 1958 Oct;30(1):186–187. doi: 10.1016/0006-3002(58)90257-9. [DOI] [PubMed] [Google Scholar]
  2. Adams E., Rosso G. Alpha-ketoglutaric semialdehyde dehydrogenase of Pseudomonas. Properties of the purified enzyme induced by hydroxyproline and of the glucarate-induced and constitutive enzymes. J Biol Chem. 1967 Apr 25;242(8):1802–1814. [PubMed] [Google Scholar]
  3. Ankel H., Feingold D. S. Biosynthesis of uridine diphosphate D-xylose. II. Uridine diphosphate D-glucuronate carboxy-lyase of Cryptococcus laurentii. Biochemistry. 1966 Jan;5(1):182–189. doi: 10.1021/bi00865a024. [DOI] [PubMed] [Google Scholar]
  4. BLUMENTHAL H. J., FISH D. C. Bacterial conversion of D-glucarate to glycerate and pyruvate. Biochem Biophys Res Commun. 1963 May 3;11:239–243. doi: 10.1016/0006-291x(63)90341-3. [DOI] [PubMed] [Google Scholar]
  5. Blumenthal H. J., Jepson T. Asymmetric dehydration of galactarate by bacterial galactarate dehydratase. Biochem Biophys Res Commun. 1964 Oct 14;17(3):282–287. doi: 10.1016/0006-291x(64)90398-5. [DOI] [PubMed] [Google Scholar]
  6. CAVALLINI D., FRONTALI N. Quantitative determination of keto-acids by paper partition chromatography. Biochim Biophys Acta. 1954 Mar;13(3):439–445. doi: 10.1016/0006-3002(54)90351-0. [DOI] [PubMed] [Google Scholar]
  7. CAVALLINI D., FRONTALI N., TOSCHI G. Keto-acid content of human blood and urine. Nature. 1949 Nov 5;164(4175):792–792. doi: 10.1038/164792b0. [DOI] [PubMed] [Google Scholar]
  8. Chang Y. F., Feingold D. S. Hexuronic acid dehydrogenase of Agrobacterium tumefaciens. J Bacteriol. 1969 Sep;99(3):667–673. doi: 10.1128/jb.99.3.667-673.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DAGLEY S., TRUDGILL P. W. THE METABOLISM OF GALACTARATE, D-GLUCARATE AND VARIOUS PENTOSES BY SPECIES OF PSEUDOMONAS. Biochem J. 1965 Apr;95:48–58. doi: 10.1042/bj0950048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ENTNER N., DOUDOROFF M. Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem. 1952 May;196(2):853–862. [PubMed] [Google Scholar]
  11. Farmer J. J., 3rd, Eagon R. G. Aldohexuronic acid catabolism by a soil Aeromonas. J Bacteriol. 1969 Jan;97(1):97–106. doi: 10.1128/jb.97.1.97-106.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KESSLER G., NEUFELD E. F., FEINGOLD D. S., HASSID W. Z. Metabolism of D-glucuronic acid and D-galacturonic acid by Phaseolus aureus seedlings. J Biol Chem. 1961 Feb;236:308–312. [PubMed] [Google Scholar]
  13. KILGORE W. W., STARR M. P. Uronate oxidation by phytopathogenic pseudomonads. Nature. 1959 May 16;183(4672):1412–1413. doi: 10.1038/1831412a0. [DOI] [PubMed] [Google Scholar]
  14. Kohn L. D., Jakoby W. B. Tartaric acid metabolism. 3. The formation of glyceric acid. J Biol Chem. 1968 May 25;243(10):2465–2471. [PubMed] [Google Scholar]
  15. LEVIN D. H., RACKER E. Condensation of arabinose 5-phosphate and phosphorylenol pyruvate by 2-keto-3-deoxy-8-phosphooctonic acid synthetase. J Biol Chem. 1959 Oct;234:2532–2539. [PubMed] [Google Scholar]
  16. LOEWUS F. A., KELLY S. The metabolism of p-galacturonic acid and its methyl ester in the detached ripening strawberry. Arch Biochem Biophys. 1961 Dec;95:483–493. doi: 10.1016/0003-9861(61)90180-1. [DOI] [PubMed] [Google Scholar]
  17. Marsh C. A. Metabolism of d-glucuronolactone in mammalian systems. 2. Conversion of d-glucuronolactone into d-glucaric acid by tissue preparations. Biochem J. 1963 Apr;87(1):82–90. doi: 10.1042/bj0870082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PREISS J., ASHWELL G. 3-Deoxy-D-glycero-2,5-hexodiulo-sonic acid, a new intermediate in the metabolism of polygalacturonate. Biochem Biophys Res Commun. 1962 Aug 7;8:357–360. doi: 10.1016/0006-291x(62)90007-4. [DOI] [PubMed] [Google Scholar]
  19. SINGH R. M., ADAMS E. ALPHA-KETOGLUTARIC SEMIALDEHYDE: A METABOLIC INTERMEDIATE. Science. 1964 Apr 3;144(3614):67–68. doi: 10.1126/science.144.3614.67. [DOI] [PubMed] [Google Scholar]
  20. SMILEY J. D., ASHWELL G. Uronic acid metabolism in bacteria. III. Purification and properties of D-altronic acid and D-mannonic acid dehydrases in Escherichia coli. J Biol Chem. 1960 Jun;235:1571–1575. [PubMed] [Google Scholar]
  21. SRINIVASAN P. R., SPRINSON D. B. 2-Keto-3-deoxy-D-arabo-heptonic acid 7-phosphate synthetase. J Biol Chem. 1959 Apr;234(4):716–722. [PubMed] [Google Scholar]
  22. STARR M. P., MORAN F. Eliminative split of pectic substances by phytopathogenic soft-rot bacteria. Science. 1962 Mar 16;135(3507):920–921. doi: 10.1126/science.135.3507.920. [DOI] [PubMed] [Google Scholar]
  23. STOOLMILLER A. C., ABELES R. H. FORMATION OF ALPHA-KETOGLUTARATE SEMIALDEHYDE. AN INTRAMOLECULAR DISMUTATION REACTION. Biochem Biophys Res Commun. 1965 May 3;19:438–443. doi: 10.1016/0006-291x(65)90143-9. [DOI] [PubMed] [Google Scholar]
  24. STRECKER H. J. Glutamic dehydrogenase. Arch Biochem Biophys. 1953 Sep;46(1):128–140. doi: 10.1016/0003-9861(53)90176-3. [DOI] [PubMed] [Google Scholar]
  25. Singh R. M., Adams E. Isolation and identification of 2,5-dioxovalerate, an intermediate in the bacterial oxidation of hydroxyproline. J Biol Chem. 1965 Nov;240(11):4352–4356. [PubMed] [Google Scholar]
  26. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  27. TSUJINO I., SAITO T. A new unsaturated uronide isolated from alginase hydrolysate. Nature. 1961 Dec 9;192:970–971. doi: 10.1038/192970a0. [DOI] [PubMed] [Google Scholar]
  28. WARAVDEKAR V. S., SASLAW L. D. A method of estimation of 2-deoxyribose. Biochim Biophys Acta. 1957 May;24(2):439–439. doi: 10.1016/0006-3002(57)90224-x. [DOI] [PubMed] [Google Scholar]
  29. WARREN L. Thiobarbituric acid spray reaction for deoxy sugars and sialic acids. Nature. 1960 Apr 16;186:237–237. doi: 10.1038/186237a0. [DOI] [PubMed] [Google Scholar]
  30. WEISSBACH A., HURWITZ J. The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. Identification. J Biol Chem. 1959 Apr;234(4):705–709. [PubMed] [Google Scholar]
  31. ZAJIC J. E. Hexuronic dehydrogenase of Agrobacterium tumefaciens. J Bacteriol. 1959 Nov;78:734–735. doi: 10.1128/jb.78.5.734-735.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES