Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Sep;64(1):267–274. doi: 10.1073/pnas.64.1.267

A PROPOSED COMMON ALLOSTERIC MECHANISM FOR ACTIVE TRANSPORT, MUSCLE CONTRACTION, AND RIBOSOMAL TRANSLOCATION*

Terrell L Hill 1
PMCID: PMC286157  PMID: 5263010

Abstract

It is suggested that active transport, muscle contraction, and ribosomal translocation may all make use of a common allosteric mechanism in which ATP or GTP serves as both the effector and substrate and in which a conformational change in a protein (enzyme) moves or exerts a force on a second ligand. The enzymatic splitting of ATP or GTP provides the driving force for the process and allows repetition of the steady-state cycle.

Full text

PDF
274

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Civan M. M., Podolsky R. J. Contraction kinetics of striated muscle fibres following quick changes in load. J Physiol. 1966 Jun;184(3):511–534. doi: 10.1113/jphysiol.1966.sp007929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fuller W., Hodgson A. Conformation of the anticodon loop intRNA. Nature. 1967 Aug 19;215(5103):817–821. doi: 10.1038/215817a0. [DOI] [PubMed] [Google Scholar]
  3. Hill T. L., Kedem O. Studies in irreversible thermodynamics. 3. Models for steady state and active transport across membranes. J Theor Biol. 1966 Apr;10(3):399–441. doi: 10.1016/0022-5193(66)90136-6. [DOI] [PubMed] [Google Scholar]
  4. Hill T. L. Studies in irreversible thermodynamics. IV. Diagrammatic representation of steady state fluxes for unimolecular systems. J Theor Biol. 1966 Apr;10(3):442–459. doi: 10.1016/0022-5193(66)90137-8. [DOI] [PubMed] [Google Scholar]
  5. Hill T. L., White G. M. On the sliding-filament model of muscular contraction, IV. Calculation of force-velocity curves. Proc Natl Acad Sci U S A. 1968 Nov;61(3):889–896. doi: 10.1073/pnas.61.3.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lipmann F. Polypeptide chain elongation in protein biosynthesis. Science. 1969 May 30;164(3883):1024–1031. doi: 10.1126/science.164.3883.1024. [DOI] [PubMed] [Google Scholar]
  7. MONOD J., JACOB F. Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol. 1961;26:389–401. doi: 10.1101/sqb.1961.026.01.048. [DOI] [PubMed] [Google Scholar]
  8. Nishizuka Y., Lipmann F. The interrelationship between guanosine triphosphatase and amino acid polymerization. Arch Biochem Biophys. 1966 Sep 26;116(1):344–351. doi: 10.1016/0003-9861(66)90040-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES